/***************************************************************************** // Copyright Microsoft Corporation. All Rights Reserved. * SPCollec.h * *------------* * This header file contains the SAPI5 collection class templates. These * are a modified version of the MFC template classes without the dependencies. *----------------------------------------------------------------------------- *****************************************************************************/ #ifndef SPCollec_h #define SPCollec_h #ifndef _INC_LIMITS #include #endif #ifndef _INC_STDLIB #include #endif #ifndef _INC_SEARCH #include #endif #include #pragma once ///////////////////////////////////////////////////////////////////////////// #define SPASSERT_VALID( a ) // This doesn't do anything right now typedef void* SPLISTPOS; typedef DWORD SPLISTHANDLE; #define SP_BEFORE_START_POSITION ((void*)-1L) inline BOOL SPIsValidAddress(const void* lp, UINT /* nBytes */, BOOL /* bReadWrite */) { return (lp != NULL); } ///////////////////////////////////////////////////////////////////////////// // global helpers (can be overridden) inline HRESULT SPConstructElementsVoid (void *pElements, size_t sizeof_TYPE, int nCount) { HRESULT hr = S_OK; _ASSERT( nCount == 0 || SPIsValidAddress( pElements, nCount * (UINT) sizeof_TYPE, TRUE ) ); // default is bit-wise zero initialization memset(pElements, 0, nCount * sizeof_TYPE); return hr; } template inline HRESULT SPConstructElements(TYPE* pElements, int nCount) { HRESULT hr = S_OK; _ASSERT( nCount == 0 || SPIsValidAddress( pElements, nCount * sizeof(TYPE), TRUE ) ); // default is bit-wise zero initialization memset((void*)pElements, 0, nCount * sizeof(TYPE)); return hr; } inline void SPDestructElementsVoid(void* pElements, size_t sizeof_TYPE, int nCount) { _ASSERT( ( nCount == 0 || SPIsValidAddress( pElements, nCount * (UINT) sizeof_TYPE, TRUE ) ) ); pElements; // not used nCount; // not used sizeof_TYPE; // not used // default does nothing } template inline void SPDestructElements(TYPE* pElements, int nCount) { _ASSERT( ( nCount == 0 || SPIsValidAddress( pElements, nCount * sizeof(TYPE), TRUE ) ) ); pElements; // not used nCount; // not used // default does nothing } inline HRESULT SPCopyElementsVoid(void* pDest, const void* pSrc, size_t sizeof_TYPE, int nCount) { HRESULT hr = S_OK; _ASSERT( ( nCount == 0 || SPIsValidAddress( pDest, nCount * (UINT) sizeof_TYPE, TRUE )) ); _ASSERT( ( nCount == 0 || SPIsValidAddress( pSrc, nCount * (UINT) sizeof_TYPE, FALSE )) ); // default is bit-wise copy memcpy(pDest, pSrc, nCount * sizeof_TYPE); return hr; } template inline HRESULT SPCopyElements(TYPE* pDest, const TYPE* pSrc, int nCount) { HRESULT hr = S_OK; _ASSERT( ( nCount == 0 || SPIsValidAddress( pDest, nCount * sizeof(TYPE), TRUE )) ); _ASSERT( ( nCount == 0 || SPIsValidAddress( pSrc, nCount * sizeof(TYPE), FALSE )) ); // default is bit-wise copy memcpy(pDest, pSrc, nCount * sizeof(TYPE)); return hr; } template BOOL SPCompareElements(const TYPE* pElement1, const ARG_TYPE* pElement2) { _ASSERT( SPIsValidAddress( pElement1, sizeof(TYPE), FALSE ) ); _ASSERT( SPIsValidAddress( pElement2, sizeof(ARG_TYPE), FALSE ) ); return *pElement1 == *pElement2; } template inline UINT SPHashKey(ARG_KEY key) { // default identity hash - works for most primitive values return ((UINT)(DWORD_PTR)key) >> 4; } ///////////////////////////////////////////////////////////////////////////// // CSPPlex struct CSPPlex // warning variable length structure { CSPPlex* pNext; UINT nMax; UINT nCur; /* BYTE data[maxNum*elementSize]; */ void* data() { return this+1; } static CSPPlex* PASCAL Create( CSPPlex*& pHead, UINT nMax, UINT cbElement ) { CSPPlex* p = NULL; UINT cbSize; if (SUCCEEDED(UIntMult(nMax, cbElement, &cbSize)) && SUCCEEDED(UIntAdd(cbSize, sizeof(CSPPlex), &cbSize))) { p = (CSPPlex*) new BYTE[cbSize]; } if (p != NULL) { p->nMax = nMax; p->nCur = 0; p->pNext = pHead; pHead = p; // change head (adds in reverse order for simplicity) } return p; } void FreeDataChain() { CSPPlex* p = this; while (p != NULL) { BYTE* bytes = (BYTE*) p; CSPPlex* pNext = p->pNext; delete[] bytes; p = pNext; } } }; ///////////////////////////////////////////////////////////////////////////// // CSPArray class CSPArrayVoid // non-template base worked class for template CSPArray { public: // Construction CSPArrayVoid(); // Attributes int GetSize() const; int GetUpperBound() const; HRESULT SetSize(int nNewSize, int nGrowBy = -1); // Clean up void FreeExtra(); void RemoveAll(); // Operations that move elements around void RemoveAt(int nIndex, int nCount = 1); void Sort(int (__cdecl *compare )(const void *elem1, const void *elem2 )); // Implementation protected: void* m_pData; // the actual array of data int m_nSize; // # of elements (upperBound - 1) int m_nMaxSize; // max allocated int m_nGrowBy; // grow amount size_t m_sizeofTYPE; // size of TYPE in template class public: ~CSPArrayVoid(); #ifdef _DEBUG void AssertValid() const; #endif }; ///////////////////////////////////////////////////////////////////////////// // CSPArrayVoid implementation inline int CSPArrayVoid::GetSize() const { return m_nSize; } inline int CSPArrayVoid::GetUpperBound() const { return m_nSize-1; } inline void CSPArrayVoid::RemoveAll() { SetSize(0, -1); } inline CSPArrayVoid::CSPArrayVoid() { m_pData = NULL; m_nSize = m_nMaxSize = m_nGrowBy = 0; } inline CSPArrayVoid::~CSPArrayVoid() { SPASSERT_VALID( this ); if (m_pData != NULL) { SPDestructElementsVoid(m_pData, m_sizeofTYPE, m_nSize); delete[] (BYTE*)m_pData; } } inline HRESULT CSPArrayVoid::SetSize(int nNewSize, int nGrowBy) { SPASSERT_VALID( this ); _ASSERT( nNewSize >= 0 ); HRESULT hr = S_OK; if (nGrowBy != -1) m_nGrowBy = nGrowBy; // set new size if (nNewSize == 0) { // shrink to nothing if (m_pData != NULL) { SPDestructElementsVoid(m_pData, m_sizeofTYPE, m_nSize); delete[] (BYTE*)m_pData; m_pData = NULL; } m_nSize = m_nMaxSize = 0; } else if (m_pData == NULL) { // create one with exact size #ifdef SIZE_T_MAX _ASSERT( (UINT)nNewSize <= SIZE_T_MAX/m_sizeofTYPE ); // no overflow #endif m_pData = (void *)new BYTE[nNewSize * m_sizeofTYPE]; if( m_pData ) { hr = SPConstructElementsVoid(m_pData, m_sizeofTYPE, nNewSize); if( SUCCEEDED( hr ) ) { m_nSize = m_nMaxSize = nNewSize; } else { delete[] (BYTE*)m_pData; m_pData = NULL; } } else { hr = E_OUTOFMEMORY; } } else if (nNewSize <= m_nMaxSize) { // it fits if (nNewSize > m_nSize) { // initialize the new elements hr = SPConstructElementsVoid((BYTE *)m_pData+m_nSize*m_sizeofTYPE, m_sizeofTYPE, nNewSize-m_nSize); } else if (m_nSize > nNewSize) { // destroy the old elements SPDestructElementsVoid((BYTE *)m_pData+nNewSize*m_sizeofTYPE, m_sizeofTYPE, m_nSize-nNewSize); } if( SUCCEEDED( hr ) ) { m_nSize = nNewSize; } } else { // otherwise, grow array nGrowBy = m_nGrowBy; if (nGrowBy == 0) { // heuristically determe growth when nGrowBy == 0 // (this avoids heap fragmentation in many situations) nGrowBy = min(1024, max(4, m_nSize / 8)); } int nNewMax; if (nNewSize < m_nMaxSize + nGrowBy) nNewMax = m_nMaxSize + nGrowBy; // granularity else nNewMax = nNewSize; // no slush _ASSERT( nNewMax >= m_nMaxSize ); // no wrap around #ifdef SIZE_T_MAX _ASSERT( (UINT)nNewMax <= SIZE_T_MAX/m_sizeofTYPE ); // no overflow #endif void* pNewData = (void *)new BYTE[nNewMax * m_sizeofTYPE]; if( pNewData ) { // copy new data from old memcpy(pNewData, m_pData, m_nSize * m_sizeofTYPE); // construct remaining elements _ASSERT( nNewSize > m_nSize ); hr = SPConstructElementsVoid((BYTE *)pNewData+m_nSize*m_sizeofTYPE, m_sizeofTYPE, nNewSize-m_nSize); // get rid of old stuff (note: no destructors called) delete[] (BYTE*)m_pData; m_pData = pNewData; m_nSize = nNewSize; m_nMaxSize = nNewMax; } else { hr = E_OUTOFMEMORY; } } return hr; } inline void CSPArrayVoid::FreeExtra() { SPASSERT_VALID( this ); if (m_nSize != m_nMaxSize) { // shrink to desired size #ifdef SIZE_T_MAX _ASSERT( (UINT)m_nSize <= SIZE_T_MAX/m_sizeofTYPE); // no overflow #endif void* pNewData = NULL; if (m_nSize != 0) { pNewData = (void *)new BYTE[m_nSize * m_sizeofTYPE]; _ASSERT(pNewData); // copy new data from old memcpy(pNewData, m_pData, m_nSize * m_sizeofTYPE); } // get rid of old stuff (note: no destructors called) delete[] (BYTE*)m_pData; m_pData = pNewData; m_nMaxSize = m_nSize; } } inline void CSPArrayVoid::RemoveAt(int nIndex, int nCount) { SPASSERT_VALID( this ); _ASSERT( nIndex >= 0 ); _ASSERT( nCount >= 0 ); _ASSERT( nIndex + nCount <= m_nSize ); // just remove a range int nMoveCount = m_nSize - (nIndex + nCount); SPDestructElementsVoid((BYTE *)m_pData + nIndex*m_sizeofTYPE, m_sizeofTYPE, nCount); if (nMoveCount) memcpy((BYTE *)m_pData + nIndex*m_sizeofTYPE, (BYTE *)m_pData + (nIndex + nCount)*m_sizeofTYPE, nMoveCount * m_sizeofTYPE); m_nSize -= nCount; } inline void CSPArrayVoid::Sort(int (__cdecl *compare )(const void *elem1, const void *elem2 )) { SPASSERT_VALID( this ); _ASSERT( m_pData != NULL ); qsort( m_pData, m_nSize, m_sizeofTYPE, compare ); } #ifdef _DEBUG inline void CSPArrayVoid::AssertValid() const { if (m_pData == NULL) { _ASSERT( m_nSize == 0 ); _ASSERT( m_nMaxSize == 0 ); } else { _ASSERT( m_nSize >= 0 ); _ASSERT( m_nMaxSize >= 0 ); _ASSERT( m_nSize <= m_nMaxSize ); _ASSERT( SPIsValidAddress(m_pData, m_nMaxSize * (UINT) m_sizeofTYPE, TRUE ) ); } } #endif //_DEBUG ///////////////////////////////////////////////////////////////////////////// // now for the derived template class template class CSPArray : public CSPArrayVoid { public: // Construction CSPArray(); // Attributes // int GetSize() const; // now in base class // int GetUpperBound() const; // now in base class // Operations // Clean up // void FreeExtra(); // now in base class // void RemoveAll(); // now in base class // Accessing elements TYPE GetAt(int nIndex) const; void SetAt(int nIndex, ARG_TYPE newElement); TYPE& ElementAt(int nIndex); // Direct Access to the element data (may return NULL) const TYPE* GetData() const; TYPE* GetData(); // Potentially growing the array HRESULT SetAtGrow(int nIndex, ARG_TYPE newElement); // the helper method add will call SetAtGrow and return the original size of the array (essentially the index of the entry you just added) int Add(ARG_TYPE newElement); // AddHR is the same as Add except it returns a HRESULT instead of the new index. Essentially the same as SetAtGrow but without requiring the target index HRESULT AddHR(ARG_TYPE newElement); int Append(const CSPArray& src); HRESULT Copy(const CSPArray& src); // overloaded operator helpers TYPE operator[](int nIndex) const; TYPE& operator[](int nIndex); // Operations that move elements around HRESULT InsertAt(int nIndex, ARG_TYPE newElement, int nCount = 1); // void RemoveAt(int nIndex, int nCount = 1); // now in base class HRESULT InsertAt(int nStartIndex, CSPArray* pNewArray); // void Sort(int (__cdecl *compare )(const void *elem1, const void *elem2 )); // now in base class public: ~CSPArray() {}; #ifdef _DEBUG // void Dump(CDumpContext&) const; void AssertValid() const; #endif }; ///////////////////////////////////////////////////////////////////////////// // CSPArray inline functions template inline TYPE CSPArray::GetAt(int nIndex) const { _ASSERT( (nIndex >= 0 && nIndex < m_nSize) ); return ((TYPE *)m_pData)[nIndex]; } template inline void CSPArray::SetAt(int nIndex, ARG_TYPE newElement) { _ASSERT( (nIndex >= 0 && nIndex < m_nSize) ); ((TYPE *)m_pData)[nIndex] = newElement; } template inline TYPE& CSPArray::ElementAt(int nIndex) { _ASSERT( (nIndex >= 0 && nIndex < m_nSize) ); return ((TYPE *)m_pData)[nIndex]; } template inline const TYPE* CSPArray::GetData() const { return (const TYPE*)m_pData; } template inline TYPE* CSPArray::GetData() { return (TYPE*)m_pData; } template inline int CSPArray::Add(ARG_TYPE newElement) { int nIndex = m_nSize; SetAtGrow(nIndex, newElement); return nIndex; } template inline HRESULT CSPArray::AddHR(ARG_TYPE newElement) { return SetAtGrow(m_nSize, newElement); } template inline TYPE CSPArray::operator[](int nIndex) const { return GetAt(nIndex); } template inline TYPE& CSPArray::operator[](int nIndex) { return ElementAt(nIndex); } ///////////////////////////////////////////////////////////////////////////// // CSPArray out-of-line functions template inline CSPArray::CSPArray() { m_sizeofTYPE = sizeof(TYPE); } template int CSPArray::Append(const CSPArray& src) { SPASSERT_VALID( this ); _ASSERT( this != &src ); // cannot append to itself int nOldSize = m_nSize; HRESULT hr = SetSize(m_nSize + src.m_nSize); if( SUCCEEDED( hr ) ) { hr = SPCopyElements((TYPE *)m_pData + nOldSize, (TYPE *)(src.m_pData), src.m_nSize); } return ( SUCCEEDED( hr ) )?(nOldSize):(-1); } template HRESULT CSPArray::Copy(const CSPArray& src) { SPASSERT_VALID( this ); _ASSERT( this != &src ); // cannot copy to itself HRESULT hr = SetSize(src.m_nSize); if( SUCCEEDED( hr ) ) { hr = SPCopyElements((TYPE *)m_pData, (TYPE *)(src.m_pData), src.m_nSize); } return hr; } template HRESULT CSPArray::SetAtGrow(int nIndex, ARG_TYPE newElement) { SPASSERT_VALID( this ); _ASSERT( nIndex >= 0 ); HRESULT hr = S_OK; if (nIndex >= m_nSize) { hr = SetSize(nIndex+1, -1); } if( SUCCEEDED( hr ) ) { ((TYPE *)m_pData)[nIndex] = newElement; } return hr; } template HRESULT CSPArray::InsertAt(int nIndex, ARG_TYPE newElement, int nCount /*=1*/) { SPASSERT_VALID( this ); _ASSERT( nIndex >= 0 ); // will expand to meet need _ASSERT( nCount > 0 ); // zero or negative size not allowed HRESULT hr = S_OK; if (nIndex >= m_nSize) { // adding after the end of the array hr = SetSize(nIndex + nCount, -1); // grow so nIndex is valid } else { // inserting in the middle of the array int nOldSize = m_nSize; hr = SetSize(m_nSize + nCount, -1); // grow it to new size if( SUCCEEDED( hr ) ) { // shift old data up to fill gap memmove(&m_pData[nIndex+nCount], &m_pData[nIndex], (nOldSize-nIndex) * sizeof(TYPE)); // re-init slots we copied from hr = SPConstructElements(&m_pData[nIndex], nCount); } } // insert new value in the gap if( SUCCEEDED( hr ) ) { _ASSERT( nIndex + nCount <= m_nSize ); while (nCount--) ((TYPE *)m_pData)[nIndex++] = newElement; } return hr; } template HRESULT CSPArray::InsertAt(int nStartIndex, CSPArray* pNewArray) { SPASSERT_VALID( this ); SPASSERT_VALID( pNewArray ); _ASSERT( nStartIndex >= 0 ); HRESULT hr = S_OK; if (pNewArray->GetSize() > 0) { hr = InsertAt(nStartIndex, pNewArray->GetAt(0), pNewArray->GetSize()); for (int i = 0; SUCCEEDED( hr )&& (i < pNewArray->GetSize()); i++) { SetAt(nStartIndex + i, pNewArray->GetAt(i)); } } return hr; } ///////////////////////////////////////////////////////////////////////////// // CSPList template class CSPList { protected: struct CNode { CNode* pNext; CNode* pPrev; TYPE data; }; public: // Construction CSPList(int nBlockSize = 10); // Attributes (head and tail) // count of elements int GetCount() const; BOOL IsEmpty() const; // peek at head or tail TYPE& GetHead(); TYPE GetHead() const; TYPE& GetTail(); TYPE GetTail() const; // Operations // get head or tail (and remove it) - don't call on empty list ! TYPE RemoveHead(); TYPE RemoveTail(); // add before head or after tail SPLISTPOS AddHead(ARG_TYPE newElement); SPLISTPOS AddTail(ARG_TYPE newElement); // add another list of elements before head or after tail void AddHead(CSPList* pNewList); void AddTail(CSPList* pNewList); // remove all elements void RemoveAll(); // iteration SPLISTPOS GetHeadPosition() const; SPLISTPOS GetTailPosition() const; TYPE& GetNext(SPLISTPOS& rPosition); // return *Position++ TYPE GetNext(SPLISTPOS& rPosition) const; // return *Position++ TYPE& GetPrev(SPLISTPOS& rPosition); // return *Position-- TYPE GetPrev(SPLISTPOS& rPosition) const; // return *Position-- // getting/modifying an element at a given position TYPE& GetAt(SPLISTPOS position); TYPE GetAt(SPLISTPOS position) const; void SetAt(SPLISTPOS pos, ARG_TYPE newElement); void RemoveAt(SPLISTPOS position); // inserting before or after a given position SPLISTPOS InsertBefore(SPLISTPOS position, ARG_TYPE newElement); SPLISTPOS InsertAfter(SPLISTPOS position, ARG_TYPE newElement); // helper functions (note: O(n) speed) SPLISTPOS Find(ARG_TYPE searchValue, SPLISTPOS startAfter = NULL) const; // defaults to starting at the HEAD, return NULL if not found SPLISTPOS FindIndex(int nIndex) const; // get the 'nIndex'th element (may return NULL) // Implementation protected: CNode* m_pNodeHead; CNode* m_pNodeTail; int m_nCount; CNode* m_pNodeFree; struct CSPPlex* m_pBlocks; int m_nBlockSize; CNode* NewNode(CNode* pPrev, CNode* pNext) { if (m_pNodeFree == NULL) { // add another block CSPPlex* pNewBlock = CSPPlex::Create(m_pBlocks, m_nBlockSize,sizeof(CNode)); if (pNewBlock != NULL) { // chain them into free list CNode* pNode = (CNode*) pNewBlock->data(); // free in reverse order to make it easier to debug pNode += m_nBlockSize - 1; for (int i = m_nBlockSize-1; i >= 0; i--, pNode--) { pNode->pNext = m_pNodeFree; m_pNodeFree = pNode; } } } CNode* pNode = m_pNodeFree; if( pNode ) { if( SUCCEEDED( SPConstructElements(&pNode->data, 1) ) ) { m_pNodeFree = m_pNodeFree->pNext; pNode->pPrev = pPrev; pNode->pNext = pNext; m_nCount++; _ASSERT( m_nCount > 0 ); // make sure we don't overflow } } return pNode; } void FreeNode(CNode* pNode) { SPDestructElements(&pNode->data, 1); pNode->pNext = m_pNodeFree; m_pNodeFree = pNode; m_nCount--; _ASSERT( m_nCount >= 0 ); // make sure we don't underflow } public: ~CSPList(); #ifdef _DEBUG void AssertValid() const; #endif }; ///////////////////////////////////////////////////////////////////////////// // CSPList inline functions template inline int CSPList::GetCount() const { return m_nCount; } template inline BOOL CSPList::IsEmpty() const { return m_nCount == 0; } template inline TYPE& CSPList::GetHead() { _ASSERT( m_pNodeHead != NULL ); return m_pNodeHead->data; } template inline TYPE CSPList::GetHead() const { _ASSERT( m_pNodeHead != NULL ); return m_pNodeHead->data; } template inline TYPE& CSPList::GetTail() { _ASSERT( m_pNodeTail != NULL ); return m_pNodeTail->data; } template inline TYPE CSPList::GetTail() const { _ASSERT( m_pNodeTail != NULL ); return m_pNodeTail->data; } template inline SPLISTPOS CSPList::GetHeadPosition() const { return (SPLISTPOS) m_pNodeHead; } template inline SPLISTPOS CSPList::GetTailPosition() const { return (SPLISTPOS) m_pNodeTail; } template inline TYPE& CSPList::GetNext(SPLISTPOS& rPosition) // return *Position++ { CNode* pNode = (CNode*) rPosition; _ASSERT( SPIsValidAddress(pNode, sizeof(CNode), TRUE ) ); rPosition = (SPLISTPOS) pNode->pNext; return pNode->data; } template inline TYPE CSPList::GetNext(SPLISTPOS& rPosition) const // return *Position++ { CNode* pNode = (CNode*) rPosition; _ASSERT( SPIsValidAddress(pNode, sizeof(CNode), TRUE ) ); rPosition = (SPLISTPOS) pNode->pNext; return pNode->data; } template inline TYPE& CSPList::GetPrev(SPLISTPOS& rPosition) // return *Position-- { CNode* pNode = (CNode*) rPosition; _ASSERT( SPIsValidAddress(pNode, sizeof(CNode), TRUE ) ); rPosition = (SPLISTPOS) pNode->pPrev; return pNode->data; } template inline TYPE CSPList::GetPrev(SPLISTPOS& rPosition) const // return *Position-- { CNode* pNode = (CNode*) rPosition; _ASSERT( SPIsValidAddress(pNode, sizeof(CNode), TRUE ) ); rPosition = (SPLISTPOS) pNode->pPrev; return pNode->data; } template inline TYPE& CSPList::GetAt(SPLISTPOS position) { CNode* pNode = (CNode*) position; _ASSERT( SPIsValidAddress(pNode, sizeof(CNode), TRUE ) ); return pNode->data; } template inline TYPE CSPList::GetAt(SPLISTPOS position) const { CNode* pNode = (CNode*) position; _ASSERT( SPIsValidAddress(pNode, sizeof(CNode), TRUE ) ); return pNode->data; } template inline void CSPList::SetAt(SPLISTPOS pos, ARG_TYPE newElement) { CNode* pNode = (CNode*) pos; _ASSERT( SPIsValidAddress(pNode, sizeof(CNode), TRUE ) ); pNode->data = newElement; } ///////////////////////////////////////////////////////////////////////////// // CSPList out-of-line functions template CSPList::CSPList( int nBlockSize ) { _ASSERT( nBlockSize > 0 ); m_nCount = 0; m_pNodeHead = m_pNodeTail = m_pNodeFree = NULL; m_pBlocks = NULL; m_nBlockSize = nBlockSize; } template void CSPList::RemoveAll() { SPASSERT_VALID( this ); // destroy elements CNode* pNode; for (pNode = m_pNodeHead; pNode != NULL; pNode = pNode->pNext) SPDestructElements(&pNode->data, 1); m_nCount = 0; m_pNodeHead = m_pNodeTail = m_pNodeFree = NULL; if (m_pBlocks != NULL) { m_pBlocks->FreeDataChain(); m_pBlocks = NULL; } } template CSPList::~CSPList() { RemoveAll(); _ASSERT( m_nCount == 0 ); } ///////////////////////////////////////////////////////////////////////////// // Node helpers // // Implementation note: CNode's are stored in CSPPlex blocks and // chained together. Free blocks are maintained in a singly linked list // using the 'pNext' member of CNode with 'm_pNodeFree' as the head. // Used blocks are maintained in a doubly linked list using both 'pNext' // and 'pPrev' as links and 'm_pNodeHead' and 'm_pNodeTail' // as the head/tail. // // We never free a CSPPlex block unless the List is destroyed or RemoveAll() // is used - so the total number of CSPPlex blocks may grow large depending // on the maximum past size of the list. // template SPLISTPOS CSPList::AddHead(ARG_TYPE newElement) { SPASSERT_VALID( this ); CNode* pNewNode = NewNode(NULL, m_pNodeHead); if( pNewNode ) { pNewNode->data = newElement; if (m_pNodeHead != NULL) m_pNodeHead->pPrev = pNewNode; else m_pNodeTail = pNewNode; m_pNodeHead = pNewNode; } return (SPLISTPOS) pNewNode; } template SPLISTPOS CSPList::AddTail(ARG_TYPE newElement) { SPASSERT_VALID( this ); CNode* pNewNode = NewNode(m_pNodeTail, NULL); if( pNewNode ) { pNewNode->data = newElement; if (m_pNodeTail != NULL) m_pNodeTail->pNext = pNewNode; else m_pNodeHead = pNewNode; m_pNodeTail = pNewNode; } return (SPLISTPOS) pNewNode; } template void CSPList::AddHead(CSPList* pNewList) { SPASSERT_VALID( this ); SPASSERT_VALID( pNewList ); // add a list of same elements to head (maintain order) SPLISTPOS pos = pNewList->GetTailPosition(); while (pos != NULL) AddHead(pNewList->GetPrev(pos)); } template void CSPList::AddTail(CSPList* pNewList) { SPASSERT_VALID( this ); SPASSERT_VALID( pNewList ); // add a list of same elements SPLISTPOS pos = pNewList->GetHeadPosition(); while (pos != NULL) AddTail(pNewList->GetNext(pos)); } template TYPE CSPList::RemoveHead() { SPASSERT_VALID( this ); _ASSERT( m_pNodeHead != NULL ); // don't call on empty list !!! _ASSERT( SPIsValidAddress(m_pNodeHead, sizeof(CNode), TRUE ) ); CNode* pOldNode = m_pNodeHead; TYPE returnValue = pOldNode->data; m_pNodeHead = pOldNode->pNext; if (m_pNodeHead != NULL) m_pNodeHead->pPrev = NULL; else m_pNodeTail = NULL; FreeNode(pOldNode); return returnValue; } template TYPE CSPList::RemoveTail() { SPASSERT_VALID( this ); _ASSERT( m_pNodeTail != NULL ); // don't call on empty list !!! _ASSERT( SPIsValidAddress(m_pNodeTail, sizeof(CNode), TRUE ) ); CNode* pOldNode = m_pNodeTail; TYPE returnValue = pOldNode->data; m_pNodeTail = pOldNode->pPrev; if (m_pNodeTail != NULL) m_pNodeTail->pNext = NULL; else m_pNodeHead = NULL; FreeNode(pOldNode); return returnValue; } template SPLISTPOS CSPList::InsertBefore(SPLISTPOS position, ARG_TYPE newElement) { SPASSERT_VALID( this ); if (position == NULL) return AddHead(newElement); // insert before nothing -> head of the list // Insert it before position CNode* pOldNode = (CNode*) position; CNode* pNewNode = NewNode(pOldNode->pPrev, pOldNode); if( pNewNode ) { pNewNode->data = newElement; if (pOldNode->pPrev != NULL) { _ASSERT( SPIsValidAddress(pOldNode->pPrev, sizeof(CNode), TRUE ) ); pOldNode->pPrev->pNext = pNewNode; } else { _ASSERT( pOldNode == m_pNodeHead ); m_pNodeHead = pNewNode; } pOldNode->pPrev = pNewNode; } return (SPLISTPOS) pNewNode; } template SPLISTPOS CSPList::InsertAfter(SPLISTPOS position, ARG_TYPE newElement) { SPASSERT_VALID( this ); if (position == NULL) return AddTail(newElement); // insert after nothing -> tail of the list // Insert it before position CNode* pOldNode = (CNode*) position; _ASSERT( SPIsValidAddress(pOldNode, sizeof(CNode), TRUE )); CNode* pNewNode = NewNode(pOldNode, pOldNode->pNext); if( pNewNode ) { pNewNode->data = newElement; if (pOldNode->pNext != NULL) { _ASSERT( SPIsValidAddress(pOldNode->pNext, sizeof(CNode), TRUE )); pOldNode->pNext->pPrev = pNewNode; } else { _ASSERT( pOldNode == m_pNodeTail ); m_pNodeTail = pNewNode; } pOldNode->pNext = pNewNode; } return (SPLISTPOS) pNewNode; } template void CSPList::RemoveAt(SPLISTPOS position) { SPASSERT_VALID( this ); CNode* pOldNode = (CNode*) position; _ASSERT( SPIsValidAddress(pOldNode, sizeof(CNode), TRUE ) ); // remove pOldNode from list if (pOldNode == m_pNodeHead) { m_pNodeHead = pOldNode->pNext; } else { _ASSERT( SPIsValidAddress(pOldNode->pPrev, sizeof(CNode), TRUE ) ); pOldNode->pPrev->pNext = pOldNode->pNext; } if (pOldNode == m_pNodeTail) { m_pNodeTail = pOldNode->pPrev; } else { _ASSERT( SPIsValidAddress(pOldNode->pNext, sizeof(CNode), TRUE ) ); pOldNode->pNext->pPrev = pOldNode->pPrev; } FreeNode(pOldNode); } template SPLISTPOS CSPList::FindIndex(int nIndex) const { SPASSERT_VALID( this ); _ASSERT( nIndex >= 0 ); if (nIndex >= m_nCount) return NULL; // went too far CNode* pNode = m_pNodeHead; while (nIndex--) { _ASSERT( SPIsValidAddress(pNode, sizeof(CNode), TRUE )); pNode = pNode->pNext; } return (SPLISTPOS) pNode; } template SPLISTPOS CSPList::Find(ARG_TYPE searchValue, SPLISTPOS startAfter) const { SPASSERT_VALID( this ); CNode* pNode = (CNode*) startAfter; if (pNode == NULL) { pNode = m_pNodeHead; // start at head } else { _ASSERT( SPIsValidAddress(pNode, sizeof(CNode), TRUE ) ); pNode = pNode->pNext; // start after the one specified } for (; pNode != NULL; pNode = pNode->pNext) if (SPCompareElements(&pNode->data, &searchValue)) return (SPLISTPOS)pNode; return NULL; } #ifdef _DEBUG template void CSPList::AssertValid() const { if (m_nCount == 0) { // empty list _ASSERT( m_pNodeHead == NULL ); _ASSERT( m_pNodeTail == NULL ); } else { // non-empty list _ASSERT( SPIsValidAddress(m_pNodeHead, sizeof(CNode), TRUE )); _ASSERT( SPIsValidAddress(m_pNodeTail, sizeof(CNode), TRUE )); } } #endif //_DEBUG #endif //--- This must be the last line in the file