v1.2
This commit is contained in:
parent
082f2b1ff4
commit
8459d61f47
|
@ -6,5 +6,10 @@ set(CMAKE_CXX_STANDARD 14)
|
||||||
add_executable(
|
add_executable(
|
||||||
Keygen
|
Keygen
|
||||||
main.cpp
|
main.cpp
|
||||||
|
xp.cpp
|
||||||
|
server.cpp
|
||||||
|
header.h
|
||||||
|
utilities.cpp
|
||||||
|
key.cpp
|
||||||
)
|
)
|
||||||
target_link_libraries(Keygen ${CMAKE_CURRENT_SOURCE_DIR}/lib/libcrypto.lib -static)
|
target_link_libraries(Keygen ${CMAKE_CURRENT_SOURCE_DIR}/lib/libcrypto.lib -static)
|
127
README.md
127
README.md
|
@ -1,7 +1,126 @@
|
||||||
# XPKeygen
|
# XPKeygen
|
||||||
Windows XP VLK Keygen
|
A command line Windows XP VLK key generator. This tool allows you to generate _valid Windows XP keys_ based on a single
|
||||||
|
_raw product key_, which can be random. You can also provide the amount of keys to be generated using that raw
|
||||||
|
product key.
|
||||||
|
|
||||||
Known issues:
|
The **Raw Product Key (RPK)** is supplied in a form of 9 digits `XXX-YYYYYY`.
|
||||||
* Some of the keys aren't valid, but it's generally a less common occurrence. About 2 in 3 of the keys should work.
|
|
||||||
|
|
||||||
Issues/Pull Requests welcome.
|
|
||||||
|
### Download
|
||||||
|
Check the **Releases** tab and download the latest version from there.
|
||||||
|
|
||||||
|
|
||||||
|
### Principle of operation
|
||||||
|
We need to use a random Raw Product Key as a base to generate a Product ID in a form of `AAAAA-BBB-CCCCCCS-DDEEE`.
|
||||||
|
|
||||||
|
#### Product ID
|
||||||
|
|
||||||
|
| Digits | Meaning |
|
||||||
|
|-------:|:-------------------------------------------------------|
|
||||||
|
| AAAAA | OS Family constant |
|
||||||
|
| BBB | Most significant 3 digits of the RPK |
|
||||||
|
| CCCCCC | Least significant 6 digits of the RPK |
|
||||||
|
| S | Check digit |
|
||||||
|
| DD | Index of the public key used to verify the Product Key |
|
||||||
|
| EEE | Random 3-digit number |
|
||||||
|
|
||||||
|
The OS Family constant `AAAAA` is different for each series of Windows XP. For example, it is 76487 for SP3.
|
||||||
|
|
||||||
|
The `BBB` and `CCCCCC` sections essentially directly correspond to the Raw Product Key. If the RPK is `XXXYYYYYY`, these two sections
|
||||||
|
will transform to `XXX` and `YYYYYY` respectively.
|
||||||
|
|
||||||
|
The check digit `S` is picked so that the sum of all `C` digits with it added makes a number divisible by 7.
|
||||||
|
|
||||||
|
The public key index `DD` lets us know which public key was used to successfully verify the authenticity of our Product Key.
|
||||||
|
For example, it's 22 for Professional keys and 23 for VLK keys.
|
||||||
|
|
||||||
|
A random number `EEE` is used to generate a different Installation ID each time.
|
||||||
|
|
||||||
|
#### Product Key
|
||||||
|
|
||||||
|
The Product Key itself (not to confuse with the RPK) is of form `FFFFF-GGGGG-HHHHH-JJJJJ-KKKKK`, encoded in Base-24 with
|
||||||
|
the alphabet `BCDFGHJKMPQRTVWXY2346789` to exclude any characters that can be easily confused, like `I` and `1` or `O` and `0`.
|
||||||
|
|
||||||
|
As per the alphabet capacity formula, the key can at most contain 114 bits of information.
|
||||||
|
$$N = log2(24^25) ~ 114$$
|
||||||
|
|
||||||
|
Based on that calculation, we unpack the 114-bit Product Key into 4 ordered segments:
|
||||||
|
|
||||||
|
| Segment | Capacity | Data |
|
||||||
|
|-----------|----------|-------------------------------------------|
|
||||||
|
| Flag | 1 bit | Reserved, always set to `0x01`* |
|
||||||
|
| Serial | 30 bits | Raw Product Key (RPK) |
|
||||||
|
| Hash | 28 bits | RPK hash |
|
||||||
|
| Signature | 55 bits | Elliptic Curve signature for the RPK hash |
|
||||||
|
|
||||||
|
For simplicity' sake, we'll combine `Flag` and `Serial` segments into a single segment called `Data`. By that logic we'll be able to extract the RPK by
|
||||||
|
shifting `Data` right and pack it back by shifting bits left.
|
||||||
|
|
||||||
|
*It's not fully known what that bit does, but all a priori valid product keys I've checked had it set to 1.
|
||||||
|
|
||||||
|
#### Elliptic Curves
|
||||||
|
Elliptic Curve Cryptography (ECC) is a type of public-key cryptographic system.
|
||||||
|
This class of systems relies on challenging "one-way" math problems - easy to compute one way and intractable to solve the "other" way.
|
||||||
|
Sometimes these are called "trapdoor" functions - easy to fall into, complicated to escape.<sup>[2]</sup>
|
||||||
|
|
||||||
|
ECC relies on solving equations of the form
|
||||||
|
$$y^2 = x^3 + ax + b$$
|
||||||
|
|
||||||
|
In general, there are 2 special cases for the Elliptic Curve leveraged in cryptography - **F<sub>2m</sub>** and **F<sub>p</sub>**.
|
||||||
|
They differ only slightly. Both curves are defined over the finite field, F<sub>p</sub> uses a prime parameter that's larger than 3,
|
||||||
|
F<sub>2m</sub> assumes $p = 2m$. Microsoft used the latter in their algorithm.
|
||||||
|
|
||||||
|
An elliptic curve over the finite field F<sub>p</sub> consists of:
|
||||||
|
* a set of integer coordinates ${x, y}$, such that $0 <= x, y < p$;
|
||||||
|
* a set of points $y^2 = x^3 + ax + b \mod p$.
|
||||||
|
|
||||||
|
**An elliptic curve over F<sub>17</sub> would look like this:**
|
||||||
|
|
||||||
|
The curve consists of the blue points in above image. In practice the "elliptic curves"
|
||||||
|
used in cryptography are "sets of points in square matrix".
|
||||||
|
|
||||||
|
The above curve is "educational". It provides very small key length (4-5 bits).
|
||||||
|
In real world situations developers typically use curves of 256-bits or more.
|
||||||
|
|
||||||
|
|
||||||
|
Since it is a public-key cryptographic system, Microsoft had to share the public key with their Windows XP release to check entered product keys against.
|
||||||
|
It is stored within `pidgen.dll` in a form of a BINK resource. The first set of BINK data is there to validate retail keys, the second is for the
|
||||||
|
OEM keys respectively.
|
||||||
|
|
||||||
|
In case you want to explore further, the source code of `pidgen.dll` and all its functions is available within this repository, in the "pidgen" folder.
|
||||||
|
|
||||||
|
#### Generating valid keys
|
||||||
|
|
||||||
|
To create the CD-key generation algorithm we must compute the corresponding private key using the public key supplied with `pidgen.dll`,
|
||||||
|
which means we have to reverse-solve the one-way ECC task.
|
||||||
|
|
||||||
|
Judging by the key exposed in BINK, p is a prime number with a length of **384 bits**.
|
||||||
|
The computation difficulty using the most efficient Pollard's Rho algorithm ($O(\sqrtn)$) would be at least $O(2^168)$, but lucky for us,
|
||||||
|
Microsoft limited the value of the signature to 55 bits in order to reduce the amount of matching product keys, reducing the difficulty
|
||||||
|
to a far more manageable $O(2^28)$.
|
||||||
|
|
||||||
|
The private key was, of course, conveniently computed before us in just 6 hours on a Celeron 800 machine.
|
||||||
|
|
||||||
|
The rest of the job is done within the code of this keygen.
|
||||||
|
|
||||||
|
|
||||||
|
### Known issues
|
||||||
|
* ~~Some keys aren't valid, but it's generally a less common occurrence. About 2 in 3 of the keys should work.~~<br>
|
||||||
|
**Fixed in v1.2**. Prior versions generated a valid key with an exact chance of `0x40000/0x62A32`, which resulted in exactly
|
||||||
|
`0.64884`, or about 65%. My "2 in 3" estimate was inconceivably accurate.
|
||||||
|
* Tested **only** on Windows XP Professional SP3, but should work everywhere else as well.
|
||||||
|
* Server 2003 key generation not included yet.
|
||||||
|
|
||||||
|
|
||||||
|
### Literature
|
||||||
|
I will add more decent reads into the bibliography in a later release.
|
||||||
|
|
||||||
|
**Understanding basics of Windows XP Activation**:
|
||||||
|
* [[1] Inside Windows Product Activation - Fully Licensed](https://www.licenturion.com/xp/fully-licensed-wpa.txt)
|
||||||
|
* [[2] Elliptic Curve Cryptography for Beginners - Matt Rickard](https://matt-rickard.com/elliptic-curve-cryptography)
|
||||||
|
* [[3] Elliptic Curve Cryptography (ECC) - Practical Cryptography for Developers](https://cryptobook.nakov.com/asymmetric-key-ciphers/elliptic-curve-cryptography-ecc)
|
||||||
|
|
||||||
|
|
||||||
|
**Tested on Windows XP Professional SP3**.
|
||||||
|
|
||||||
|
Testing/Issues/Pull Requests welcome.
|
||||||
|
|
|
@ -0,0 +1,126 @@
|
||||||
|
//
|
||||||
|
// Created by Andrew on 09/04/2023.
|
||||||
|
//
|
||||||
|
|
||||||
|
#ifndef KEYGEN_HEADER_H
|
||||||
|
#define KEYGEN_HEADER_H
|
||||||
|
|
||||||
|
#include <cstdio>
|
||||||
|
#include <cstring>
|
||||||
|
#include <cassert>
|
||||||
|
|
||||||
|
#include <windows.h>
|
||||||
|
|
||||||
|
#include <openssl/bn.h>
|
||||||
|
#include <openssl/ec.h>
|
||||||
|
#include <openssl/sha.h>
|
||||||
|
#include <openssl/rand.h>
|
||||||
|
|
||||||
|
#define FIELD_BITS 384
|
||||||
|
#define FIELD_BYTES (FIELD_BITS / 8)
|
||||||
|
|
||||||
|
#define FIELD_BITS_2003 512
|
||||||
|
#define FIELD_BYTES_2003 (FIELD_BITS_2003 / 8)
|
||||||
|
|
||||||
|
#define PK_LENGTH 25
|
||||||
|
#define NULL_TERMINATOR 1
|
||||||
|
|
||||||
|
typedef unsigned long ul32;
|
||||||
|
|
||||||
|
extern HANDLE hConsole;
|
||||||
|
extern byte charset[];
|
||||||
|
|
||||||
|
extern const char pXP[];
|
||||||
|
extern const long aXP;
|
||||||
|
extern const long bXP;
|
||||||
|
|
||||||
|
// xp.cpp
|
||||||
|
void unpackXP(
|
||||||
|
ul32 *serial,
|
||||||
|
ul32 *hash,
|
||||||
|
ul32 *sig,
|
||||||
|
ul32 *raw
|
||||||
|
);
|
||||||
|
|
||||||
|
void packXP(
|
||||||
|
ul32 *raw,
|
||||||
|
ul32 *serial,
|
||||||
|
ul32 *hash,
|
||||||
|
ul32 *sig
|
||||||
|
);
|
||||||
|
|
||||||
|
void verifyXPKey(
|
||||||
|
EC_GROUP *eCurve,
|
||||||
|
EC_POINT *generator,
|
||||||
|
EC_POINT *publicKey,
|
||||||
|
char *cdKey
|
||||||
|
);
|
||||||
|
|
||||||
|
void generateXPKey(
|
||||||
|
byte *pKey,
|
||||||
|
EC_GROUP *eCurve,
|
||||||
|
EC_POINT *generator,
|
||||||
|
BIGNUM *order,
|
||||||
|
BIGNUM *privateKey,
|
||||||
|
ul32 *pRaw
|
||||||
|
);
|
||||||
|
|
||||||
|
// server.cpp
|
||||||
|
void unpackServer(
|
||||||
|
ul32 *osFamily,
|
||||||
|
ul32 *hash,
|
||||||
|
ul32 *sig,
|
||||||
|
ul32 *prefix,
|
||||||
|
ul32 *raw
|
||||||
|
);
|
||||||
|
|
||||||
|
void packServer(
|
||||||
|
ul32 *raw,
|
||||||
|
ul32 *osFamily,
|
||||||
|
ul32 *hash,
|
||||||
|
ul32 *sig,
|
||||||
|
ul32 *prefix
|
||||||
|
);
|
||||||
|
|
||||||
|
void verifyServerKey(
|
||||||
|
EC_GROUP *eCurve,
|
||||||
|
EC_POINT *generator,
|
||||||
|
EC_POINT *public_key,
|
||||||
|
char *cdKey
|
||||||
|
);
|
||||||
|
|
||||||
|
void generateServerKey(
|
||||||
|
byte *pKey,
|
||||||
|
EC_GROUP *eCurve,
|
||||||
|
EC_POINT *generator,
|
||||||
|
BIGNUM *order,
|
||||||
|
BIGNUM *privateKey,
|
||||||
|
ul32 *osFamily,
|
||||||
|
ul32 *prefix
|
||||||
|
);
|
||||||
|
|
||||||
|
// utilities.cpp
|
||||||
|
void cprintf(const char *Format, int nColor, ...);
|
||||||
|
void endiannessConvert(byte *data, int length);
|
||||||
|
|
||||||
|
EC_GROUP *initializeEllipticCurve(
|
||||||
|
const char *pSel,
|
||||||
|
long aSel,
|
||||||
|
long bSel,
|
||||||
|
const char *generatorXSel,
|
||||||
|
const char *generatorYSel,
|
||||||
|
const char *publicKeyXSel,
|
||||||
|
const char *publicKeyYSel,
|
||||||
|
BIGNUM *genOrderSel,
|
||||||
|
BIGNUM *privateKeySel,
|
||||||
|
EC_POINT **genPoint,
|
||||||
|
EC_POINT **pubPoint
|
||||||
|
);
|
||||||
|
|
||||||
|
// key.cpp
|
||||||
|
void unbase24(ul32 *byteSeq, byte *cdKey);
|
||||||
|
void base24(byte *cdKey, ul32 *byteSeq);
|
||||||
|
void printProductKey(const char *pKey);
|
||||||
|
void printProductID(const ul32 *pRaw);
|
||||||
|
|
||||||
|
#endif //KEYGEN_HEADER_H
|
|
@ -0,0 +1,105 @@
|
||||||
|
//
|
||||||
|
// Created by Andrew on 09/04/2023.
|
||||||
|
//
|
||||||
|
|
||||||
|
#include "header.h"
|
||||||
|
|
||||||
|
/* Convert from byte sequence to the CD-key. */
|
||||||
|
void base24(byte *cdKey, ul32 *byteSeq) {
|
||||||
|
byte rbs[16];
|
||||||
|
BIGNUM *z;
|
||||||
|
|
||||||
|
// Copy byte sequence to the reversed byte sequence.
|
||||||
|
memcpy(rbs, byteSeq, sizeof(rbs));
|
||||||
|
|
||||||
|
// Skip trailing zeroes and reverse y.
|
||||||
|
int length;
|
||||||
|
|
||||||
|
for (length = 15; rbs[length] == 0; length--);
|
||||||
|
endiannessConvert(rbs, ++length);
|
||||||
|
|
||||||
|
// Convert reversed byte sequence to BigNum z.
|
||||||
|
z = BN_bin2bn(rbs, length, nullptr);
|
||||||
|
|
||||||
|
// Divide z by 24 and convert the remainder to a CD-key char.
|
||||||
|
cdKey[25] = 0;
|
||||||
|
|
||||||
|
for (int i = 24; i >= 0; i--)
|
||||||
|
cdKey[i] = charset[BN_div_word(z, 24)];
|
||||||
|
|
||||||
|
BN_free(z);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Convert from CD-key to a byte sequence. */
|
||||||
|
void unbase24(ul32 *byteSeq, byte *cdKey) {
|
||||||
|
BIGNUM *y = BN_new();
|
||||||
|
BN_zero(y);
|
||||||
|
|
||||||
|
// Empty byte sequence.
|
||||||
|
memset(byteSeq, 0, 16);
|
||||||
|
|
||||||
|
// For each character in product key, place its ASCII-code.
|
||||||
|
for (int i = 0; i < 25; i++) {
|
||||||
|
BN_mul_word(y, 24);
|
||||||
|
BN_add_word(y, cdKey[i]);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Acquire length.
|
||||||
|
int n = BN_num_bytes(y);
|
||||||
|
|
||||||
|
// Place the generated code into the byte sequence.
|
||||||
|
BN_bn2bin(y, (unsigned char *)byteSeq);
|
||||||
|
BN_free(y);
|
||||||
|
|
||||||
|
// Reverse the byte sequence.
|
||||||
|
endiannessConvert((unsigned char *) byteSeq, n);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Print Product Key. */
|
||||||
|
void printProductKey(const char *pKey) {
|
||||||
|
assert(strlen((const char *)pKey) == 25);
|
||||||
|
|
||||||
|
SetConsoleTextAttribute(hConsole, 0x0A);
|
||||||
|
|
||||||
|
for (int i = 0; i < 25; i++) {
|
||||||
|
putchar(pKey[i]);
|
||||||
|
if (i != 24 && i % 5 == 4) putchar('-');
|
||||||
|
}
|
||||||
|
|
||||||
|
SetConsoleTextAttribute(hConsole, 0x0F);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Print Product ID using a Product Key. */
|
||||||
|
void printProductID(const ul32 *pRaw) {
|
||||||
|
char raw[12];
|
||||||
|
char b[6], c[8];
|
||||||
|
|
||||||
|
// Cut away last bit of the product key and convert it to an ASCII-number (=raw)
|
||||||
|
sprintf(raw, "%lu", pRaw[0] >> 1);
|
||||||
|
|
||||||
|
// Make B-part {...-640-...} -> most significant 3 digits of Raw Product Key
|
||||||
|
strncpy(b, raw, 3);
|
||||||
|
b[3] = 0;
|
||||||
|
|
||||||
|
// Make C-part {...-123456X-...} -> least significant 6 digits of Raw Product Key
|
||||||
|
strcpy(c, raw + 3);
|
||||||
|
|
||||||
|
// Make checksum digit-part {...56X-}
|
||||||
|
assert(strlen(c) == 6);
|
||||||
|
|
||||||
|
int digit = 0;
|
||||||
|
|
||||||
|
// Reverse sum algorithm to find a check digit that would add to the rest to form a sum divisible by 7.
|
||||||
|
for (int i = 0; i < 6; i++)
|
||||||
|
digit -= c[i] - '0';
|
||||||
|
|
||||||
|
while (digit < 0)
|
||||||
|
digit += 7;
|
||||||
|
|
||||||
|
// Append check digit + null terminate.
|
||||||
|
c[6] = digit + '0';
|
||||||
|
c[7] = 0;
|
||||||
|
|
||||||
|
printf("Product ID: ");
|
||||||
|
cprintf("PPPPP-%s-%s-23XXX\n", 0x0E, b, c);
|
||||||
|
}
|
617
main.cpp
617
main.cpp
|
@ -3,397 +3,103 @@
|
||||||
Rewritten by Endermanch
|
Rewritten by Endermanch
|
||||||
*/
|
*/
|
||||||
|
|
||||||
#include <cstdio>
|
#include "header.h"
|
||||||
#include <cstring>
|
|
||||||
#include <cassert>
|
|
||||||
#include <openssl/bn.h>
|
|
||||||
#include <openssl/ec.h>
|
|
||||||
#include <openssl/sha.h>
|
|
||||||
#include <windows.h>
|
|
||||||
|
|
||||||
#define FIELD_BITS 384
|
|
||||||
#define FIELD_BYTES 48
|
|
||||||
|
|
||||||
HANDLE hConsole;
|
HANDLE hConsole;
|
||||||
unsigned char charset[] = "BCDFGHJKMPQRTVWXY2346789";
|
byte charset[] = "BCDFGHJKMPQRTVWXY2346789";
|
||||||
|
|
||||||
/* Colored output */
|
const char pXP[] = "92ddcf14cb9e71f4489a2e9ba350ae29454d98cb93bdbcc07d62b502ea12238ee904a8b20d017197aae0c103b32713a9";
|
||||||
VOID cprintf(CONST CHAR *Format, INT nColor, ...) {
|
const long aXP = 1;
|
||||||
va_list vList;
|
const long bXP = 0;
|
||||||
|
|
||||||
va_start(vList, nColor);
|
// Base point G (Generator)
|
||||||
|
const char genXXP[] = "46E3775ECE21B0898D39BEA57050D422A0AF989E497962BAEE2CB17E0A28D5360D5476B8DC966443E37A14F1AEF37742";
|
||||||
|
const char genYXP[] = "7C8E741D2C34F4478E325469CD491603D807222C9C4AC09DDB2B31B3CE3F7CC191B3580079932BC6BEF70BE27604F65E";
|
||||||
|
|
||||||
SetConsoleTextAttribute(hConsole, nColor);
|
// Inverse of the public key
|
||||||
vprintf(Format, vList);
|
const char pubXXP[] = "5D8DBE75198015EC41C45AAB6143542EB098F6A5CC9CE4178A1B8A1E7ABBB5BC64DF64FAF6177DC1B0988AB00BA94BF8";
|
||||||
SetConsoleTextAttribute(hConsole, 0x0F);
|
const char pubYXP[] = "23A2909A0B4803C89F910C7191758B48746CEA4D5FF07667444ACDB9512080DBCA55E6EBF30433672B894F44ACE92BFA";
|
||||||
|
|
||||||
va_end(vList);
|
// The order of G was computed in 18 hours using a Pentium III 450
|
||||||
|
const char genOrderXP[] = "DB6B4C58EFBAFD";
|
||||||
|
|
||||||
return;
|
// The private key was computed in 10 hours using a Pentium III 450
|
||||||
|
const char privateKeyXP[] = "565B0DFF8496C8";
|
||||||
|
|
||||||
|
int mainServer() {
|
||||||
|
BIGNUM *a, *b, *p, *generatorX, *generatorY, *publicKeyX, *publicKeyY, *genOrder, *privateKey;
|
||||||
|
BN_CTX *context = BN_CTX_new();
|
||||||
|
|
||||||
|
a = BN_new();
|
||||||
|
b = BN_new();
|
||||||
|
p = BN_new();
|
||||||
|
|
||||||
|
generatorX = BN_new();
|
||||||
|
generatorY = BN_new();
|
||||||
|
|
||||||
|
publicKeyX = BN_new();
|
||||||
|
publicKeyY = BN_new();
|
||||||
|
|
||||||
|
genOrder = BN_new();
|
||||||
|
|
||||||
|
privateKey = BN_new();
|
||||||
|
|
||||||
|
/* Public data */
|
||||||
|
// Data taken from pidgen.dll BINK-resources
|
||||||
|
BN_hex2bn(&p, "C9AE7AED19F6A7E100AADE98134111AD8118E59B8264734327940064BC675A0C682E19C89695FBFA3A4653E47D47FD7592258C7E3C3C61BBEA07FE5A7E842379");
|
||||||
|
|
||||||
|
BN_set_word(a, 1);
|
||||||
|
BN_set_word(b, 0);
|
||||||
|
|
||||||
|
// Base point G (Generator)
|
||||||
|
BN_hex2bn(&generatorX, "85ACEC9F9F9B456A78E43C3637DC88D21F977A9EC15E5225BD5060CE5B892F24FEDEE574BF5801F06BC232EEF2161074496613698D88FAC4B397CE3B475406A7");
|
||||||
|
BN_hex2bn(&generatorY, "66B7D1983F5D4FE43E8B4F1E28685DE0E22BBE6576A1A6B86C67533BF72FD3D082DBA281A556A16E593DB522942C8DD7120BA50C9413DF944E7258BDDF30B3C4");
|
||||||
|
|
||||||
|
// Inverse of the public key
|
||||||
|
BN_hex2bn(&publicKeyX, "90BF6BD980C536A8DB93B52AA9AEBA640BABF1D31BEC7AA345BB7510194A9B07379F552DA7B4A3EF81A9B87E0B85B5118E1E20A098641EE4CCF2045558C98C0E");
|
||||||
|
BN_hex2bn(&publicKeyY, "6B87D1E658D03868362945CDD582E2CF33EE4BA06369E0EFE9E4851F6DCBEC7F15081E250D171EA0CC4CB06435BCFCFEA8F438C9766743A06CBD06E7EFB4C3AE");
|
||||||
|
|
||||||
|
/* Computed data */
|
||||||
|
// Order of G <- from MSKey 4-in-1
|
||||||
|
BN_hex2bn(&genOrder, "4CC5C56529F0237D");
|
||||||
|
|
||||||
|
// Computed private key
|
||||||
|
BN_hex2bn(&privateKey, "2606120F59C05118");
|
||||||
|
|
||||||
|
/* Elliptical Curve calculations. */
|
||||||
|
// The group is defined via Fp = all integers [0; p - 1], where p is prime.
|
||||||
|
// The function EC_POINT_set_affine_coordinates() sets the x and y coordinates for the point p defined over the curve given in group.
|
||||||
|
EC_GROUP *eCurve = EC_GROUP_new_curve_GFp(p, a, b, context);
|
||||||
|
|
||||||
|
// Create new point for the generator on the elliptic curve and set its coordinates to (genX; genY).
|
||||||
|
EC_POINT *genPoint = EC_POINT_new(eCurve);
|
||||||
|
EC_POINT_set_affine_coordinates(eCurve, genPoint, generatorX, generatorY, context);
|
||||||
|
|
||||||
|
// Create new point for the public key on the elliptic curve and set its coordinates to (pubX; pubY).
|
||||||
|
EC_POINT *pubPoint = EC_POINT_new(eCurve);
|
||||||
|
EC_POINT_set_affine_coordinates(eCurve, pubPoint, publicKeyX, publicKeyY, context);
|
||||||
|
|
||||||
|
// If generator and public key points are not on the elliptic curve, either the generator or the public key values are incorrect.
|
||||||
|
assert(EC_POINT_is_on_curve(eCurve, genPoint, context) == 1);
|
||||||
|
assert(EC_POINT_is_on_curve(eCurve, pubPoint, context) == 1);
|
||||||
|
|
||||||
|
char pkey[25]{};
|
||||||
|
ul32 osfamily[1], prefix[1];
|
||||||
|
|
||||||
|
osfamily[0] = 1280;
|
||||||
|
RAND_bytes((byte *)prefix, 4);
|
||||||
|
|
||||||
|
prefix[0] &= 0x3ff;
|
||||||
|
generateServerKey((byte *)pkey, eCurve, genPoint, genOrder, privateKey, osfamily, prefix);
|
||||||
|
printProductKey(pkey);
|
||||||
|
printf("\n\n");
|
||||||
|
verifyServerKey(eCurve, genPoint, pubPoint, (char *) pkey);
|
||||||
|
|
||||||
|
BN_CTX_free(context);
|
||||||
|
|
||||||
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
/* Unpacks the Product Key. */
|
|
||||||
void extract(unsigned long *serial, unsigned long *hash, unsigned long *sig, unsigned long *raw) {
|
|
||||||
|
|
||||||
// We're assuming that the quantity of information within the product key is at most 114 bits.
|
|
||||||
// log2(24^25) = 114.
|
|
||||||
|
|
||||||
// Serial = Bits [0..30] -> 31 bits
|
|
||||||
serial[0] = raw[0] & 0x7fffffff;
|
|
||||||
|
|
||||||
// Hash (e) = Bits [31..58] -> 28 bits
|
|
||||||
hash[0] = ((raw[0] >> 31) | (raw[1] << 1)) & 0xfffffff;
|
|
||||||
|
|
||||||
// Signature (s) = Bits [59..113] -> 55 bits
|
|
||||||
sig[0] = (raw[1] >> 27) | (raw[2] << 5);
|
|
||||||
sig[1] = (raw[2] >> 27) | (raw[3] << 5);
|
|
||||||
}
|
|
||||||
|
|
||||||
/* Repacks the Product Key. */
|
|
||||||
void pack(unsigned long *raw, unsigned long *serial, unsigned long *hash, unsigned long *sig) {
|
|
||||||
raw[0] = serial[0] | ((hash[0] & 1) << 31);
|
|
||||||
raw[1] = (hash[0] >> 1) | ((sig[0] & 0x1f) << 27);
|
|
||||||
raw[2] = (sig[0] >> 5) | (sig[1] << 27);
|
|
||||||
raw[3] = sig[1] >> 5;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* Convert data between endianness types. */
|
|
||||||
void endiannessConvert(unsigned char *data, int length) {
|
|
||||||
for (int i = 0; i < length / 2; i++) {
|
|
||||||
unsigned char temp = data[i];
|
|
||||||
data[i] = data[length - i - 1];
|
|
||||||
data[length - i - 1] = temp;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/* Convert from byte sequence to the CD-key. */
|
|
||||||
void base24(unsigned char *cdKey, unsigned long *byteSeq) {
|
|
||||||
unsigned char rbs[16];
|
|
||||||
BIGNUM *z;
|
|
||||||
|
|
||||||
// Copy byte sequence to the reversed byte sequence.
|
|
||||||
memcpy(rbs, byteSeq, sizeof(rbs));
|
|
||||||
|
|
||||||
// Skip trailing zeroes and reverse y.
|
|
||||||
int length;
|
|
||||||
|
|
||||||
for (length = 15; rbs[length] == 0; length--);
|
|
||||||
endiannessConvert(rbs, ++length);
|
|
||||||
|
|
||||||
// Convert reversed byte sequence to BigNum z.
|
|
||||||
z = BN_bin2bn(rbs, length, nullptr);
|
|
||||||
|
|
||||||
// Divide z by 24 and convert the remainder to a CD-key char.
|
|
||||||
cdKey[25] = 0;
|
|
||||||
|
|
||||||
for (int i = 24; i >= 0; i--)
|
|
||||||
cdKey[i] = charset[BN_div_word(z, 24)];
|
|
||||||
|
|
||||||
BN_free(z);
|
|
||||||
}
|
|
||||||
|
|
||||||
/* Convert from CD-key to a byte sequence. */
|
|
||||||
void unbase24(unsigned long *byteSeq, unsigned char *cdKey) {
|
|
||||||
BIGNUM *y = BN_new();
|
|
||||||
BN_zero(y);
|
|
||||||
|
|
||||||
// Empty byte sequence.
|
|
||||||
memset(byteSeq, 0, 16);
|
|
||||||
|
|
||||||
// For each character in product key, place its ASCII-code.
|
|
||||||
for (int i = 0; i < 25; i++) {
|
|
||||||
BN_mul_word(y, 24);
|
|
||||||
BN_add_word(y, cdKey[i]);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Acquire length.
|
|
||||||
int n = BN_num_bytes(y);
|
|
||||||
|
|
||||||
// Place the generated code into the byte sequence.
|
|
||||||
BN_bn2bin(y, (unsigned char *)byteSeq);
|
|
||||||
BN_free(y);
|
|
||||||
|
|
||||||
// Reverse the byte sequence.
|
|
||||||
endiannessConvert((unsigned char *) byteSeq, n);
|
|
||||||
}
|
|
||||||
|
|
||||||
/* Print Product ID using a Product Key. */
|
|
||||||
void printProductID(unsigned long *pKey) {
|
|
||||||
char raw[12];
|
|
||||||
char b[6], c[8];
|
|
||||||
|
|
||||||
// Cut away last bit of the product key and convert it to an ASCII-number (=raw)
|
|
||||||
sprintf(raw, "%lu", pKey[0] >> 1);
|
|
||||||
|
|
||||||
// Make B-part {...-640-...} -> most significant 3 digits of Raw Product Key
|
|
||||||
strncpy(b, raw, 3);
|
|
||||||
b[3] = 0;
|
|
||||||
|
|
||||||
// Make C-part {...-123456X-...} -> least significant 6 digits of Raw Product Key
|
|
||||||
strcpy(c, raw + 3);
|
|
||||||
|
|
||||||
// Make checksum digit-part {...56X-}
|
|
||||||
assert(strlen(c) == 6);
|
|
||||||
|
|
||||||
int digit = 0;
|
|
||||||
|
|
||||||
// Reverse sum algorithm to find a check digit that would add to the rest to form a sum divisible by 7.
|
|
||||||
for (int i = 0; i < 6; i++)
|
|
||||||
digit -= c[i] - '0';
|
|
||||||
|
|
||||||
while (digit < 0)
|
|
||||||
digit += 7;
|
|
||||||
|
|
||||||
// Append check digit + null terminate.
|
|
||||||
c[6] = digit + '0';
|
|
||||||
c[7] = 0;
|
|
||||||
|
|
||||||
printf("Product ID: ");
|
|
||||||
cprintf("PPPPP-%s-%s-23XXX\n", 0x0E, b, c);
|
|
||||||
}
|
|
||||||
|
|
||||||
/* Print Product Key. */
|
|
||||||
void printProductKey(unsigned char *pKey) {
|
|
||||||
assert(strlen((const char *)pKey) == 25);
|
|
||||||
|
|
||||||
SetConsoleTextAttribute(hConsole, 0x0A);
|
|
||||||
|
|
||||||
for (int i = 0; i < 25; i++) {
|
|
||||||
putchar(pKey[i]);
|
|
||||||
if (i != 24 && i % 5 == 4) putchar('-');
|
|
||||||
}
|
|
||||||
|
|
||||||
SetConsoleTextAttribute(hConsole, 0x0F);
|
|
||||||
}
|
|
||||||
|
|
||||||
/* Verify Product Key */
|
|
||||||
void verifyKey(EC_GROUP *ec, EC_POINT *generator, EC_POINT *publicKey, char *cdKey) {
|
|
||||||
unsigned char key[25];
|
|
||||||
|
|
||||||
BN_CTX *ctx = BN_CTX_new();
|
|
||||||
|
|
||||||
// Remove dashes from the CD-key.
|
|
||||||
for (int i = 0, k = 0; i < strlen(cdKey) && k < 25; i++) {
|
|
||||||
for (int j = 0; j < 24; j++) {
|
|
||||||
if (cdKey[i] != '-' && cdKey[i] == charset[j]) {
|
|
||||||
key[k++] = j;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Make sure the CD-key passes the verification procedure.
|
|
||||||
assert(j < 24);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Convert Base24 CD-key to bytecode.
|
|
||||||
unsigned long bKey[4]{};
|
|
||||||
unsigned long pID[1], hash[1], sig[2];
|
|
||||||
|
|
||||||
unbase24(bKey, key);
|
|
||||||
|
|
||||||
// Output CD-key bytecode.
|
|
||||||
printf("Bytecode: %.8lX %.8lX %.8lX %.8lX\n", bKey[3], bKey[2], bKey[1], bKey[0]);
|
|
||||||
|
|
||||||
// Extract pid_data, hash and signature from the bytecode.
|
|
||||||
extract(pID, hash, sig, bKey);
|
|
||||||
printProductID(pID);
|
|
||||||
|
|
||||||
printf("PID: %.8lX\nHash: %.8lX\nSignature: %.8lX %.8lX\n", pID[0], hash[0], sig[1], sig[0]);
|
|
||||||
|
|
||||||
// e = Hash
|
|
||||||
// s = Signature
|
|
||||||
BIGNUM *e, *s;
|
|
||||||
|
|
||||||
// Put hash word into BigNum e.
|
|
||||||
e = BN_new();
|
|
||||||
BN_set_word(e, hash[0]);
|
|
||||||
|
|
||||||
// Reverse signature and create a new BigNum s.
|
|
||||||
endiannessConvert((unsigned char *) sig, sizeof(sig));
|
|
||||||
s = BN_bin2bn((unsigned char *)sig, sizeof(sig), nullptr);
|
|
||||||
|
|
||||||
// Create x and y.
|
|
||||||
BIGNUM *x = BN_new();
|
|
||||||
BIGNUM *y = BN_new();
|
|
||||||
|
|
||||||
// Create 2 new points on the existing elliptic curve.
|
|
||||||
EC_POINT *u = EC_POINT_new(ec);
|
|
||||||
EC_POINT *v = EC_POINT_new(ec);
|
|
||||||
|
|
||||||
|
|
||||||
// EC_POINT_mul calculates r = generator * n + q * m.
|
|
||||||
// v = s * generator + e * (-publicKey)
|
|
||||||
|
|
||||||
// u = generator * s
|
|
||||||
EC_POINT_mul(ec, u, nullptr, generator, s, ctx);
|
|
||||||
|
|
||||||
// v = publicKey * e
|
|
||||||
EC_POINT_mul(ec, v, nullptr, publicKey, e, ctx);
|
|
||||||
|
|
||||||
// v += u
|
|
||||||
EC_POINT_add(ec, v, u, v, ctx);
|
|
||||||
|
|
||||||
// EC_POINT_get_affine_coordinates() sets x and y, either of which may be NULL, to the corresponding coordinates of p.
|
|
||||||
// x = v.x; y = v.y;
|
|
||||||
EC_POINT_get_affine_coordinates(ec, v, x, y, ctx);
|
|
||||||
|
|
||||||
|
|
||||||
unsigned char buf[FIELD_BYTES], md[SHA_DIGEST_LENGTH], t[4];
|
|
||||||
unsigned long h;
|
|
||||||
|
|
||||||
SHA_CTX hContext;
|
|
||||||
|
|
||||||
/* h = (first 32 bits of SHA1(pID || v.x, v.y)) >> 4 */
|
|
||||||
SHA1_Init(&hContext);
|
|
||||||
|
|
||||||
// Chop Product ID into 4 bytes.
|
|
||||||
t[0] = pID[0] & 0xff; // First 8 bits
|
|
||||||
t[1] = (pID[0] & 0xff00) >> 8; // Second 8 bits
|
|
||||||
t[2] = (pID[0] & 0xff0000) >> 16; // Third 8 bits
|
|
||||||
t[3] = (pID[0] & 0xff000000) >> 24; // Fourth 8 bits
|
|
||||||
|
|
||||||
// Hash chunk of data.
|
|
||||||
SHA1_Update(&hContext, t, sizeof(t));
|
|
||||||
|
|
||||||
// Empty buffer, place v.x in little-endian.
|
|
||||||
memset(buf, 0, sizeof(buf));
|
|
||||||
BN_bn2bin(x, buf);
|
|
||||||
endiannessConvert((unsigned char *) buf, sizeof(buf));
|
|
||||||
|
|
||||||
// Hash chunk of data.
|
|
||||||
SHA1_Update(&hContext, buf, sizeof(buf));
|
|
||||||
|
|
||||||
// Empty buffer, place v.y in little-endian.
|
|
||||||
memset(buf, 0, sizeof(buf));
|
|
||||||
BN_bn2bin(y, buf);
|
|
||||||
endiannessConvert((unsigned char *) buf, sizeof(buf));
|
|
||||||
|
|
||||||
// Hash chunk of data.
|
|
||||||
SHA1_Update(&hContext, buf, sizeof(buf));
|
|
||||||
|
|
||||||
// Store the final message from hContext in md.
|
|
||||||
SHA1_Final(md, &hContext);
|
|
||||||
|
|
||||||
// h = (first 32 bits of SHA1(pID || v.x, v.y)) >> 4
|
|
||||||
h = (md[0] | (md[1] << 8) | (md[2] << 16) | (md[3] << 24)) >> 4;
|
|
||||||
h &= 0xfffffff;
|
|
||||||
|
|
||||||
printf("Calculated hash: %.8lX\n", h);
|
|
||||||
|
|
||||||
// If we managed to generateKey a key with the same hash, the key is correct.
|
|
||||||
if (h == hash[0]) cprintf("Key valid\n", 0x0A);
|
|
||||||
else cprintf("Key invalid\n", 0x0C);
|
|
||||||
|
|
||||||
putchar('\n');
|
|
||||||
|
|
||||||
BN_free(e);
|
|
||||||
BN_free(s);
|
|
||||||
BN_free(x);
|
|
||||||
BN_free(y);
|
|
||||||
|
|
||||||
BN_CTX_free(ctx);
|
|
||||||
|
|
||||||
EC_POINT_free(u);
|
|
||||||
EC_POINT_free(v);
|
|
||||||
}
|
|
||||||
|
|
||||||
/* Generate a valid Product Key. */
|
|
||||||
void generateKey(unsigned char *pKey, EC_GROUP *eCurve, EC_POINT *generator, BIGNUM *order, BIGNUM *privateKey, unsigned long *pRaw) {
|
|
||||||
EC_POINT *r = EC_POINT_new(eCurve);
|
|
||||||
BN_CTX *ctx = BN_CTX_new();
|
|
||||||
|
|
||||||
BIGNUM *c = BN_new();
|
|
||||||
BIGNUM *s = BN_new();
|
|
||||||
BIGNUM *x = BN_new();
|
|
||||||
BIGNUM *y = BN_new();
|
|
||||||
|
|
||||||
unsigned long bKey[4];
|
|
||||||
|
|
||||||
do {
|
|
||||||
// Generate a random number c consisting of 384 bits without any constraints.
|
|
||||||
BN_rand(c, FIELD_BITS, BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY);
|
|
||||||
|
|
||||||
// r = generator * c;
|
|
||||||
EC_POINT_mul(eCurve, r, NULL, generator, c, ctx);
|
|
||||||
|
|
||||||
// x = r.x; y = r.y;
|
|
||||||
EC_POINT_get_affine_coordinates(eCurve, r, x, y, ctx);
|
|
||||||
|
|
||||||
SHA_CTX hContext;
|
|
||||||
unsigned char md[SHA_DIGEST_LENGTH], buf[FIELD_BYTES], t[4];
|
|
||||||
unsigned long hash[1];
|
|
||||||
|
|
||||||
// h = (First-32(SHA1(pRaw, r.x, r.y)) >> 4
|
|
||||||
SHA1_Init(&hContext);
|
|
||||||
|
|
||||||
// Chop Raw Product Key into 4 bytes.
|
|
||||||
t[0] = pRaw[0] & 0xff;
|
|
||||||
t[1] = (pRaw[0] & 0xff00) >> 8;
|
|
||||||
t[2] = (pRaw[0] & 0xff0000) >> 16;
|
|
||||||
t[3] = (pRaw[0] & 0xff000000) >> 24;
|
|
||||||
|
|
||||||
// Hash chunk of data.
|
|
||||||
SHA1_Update(&hContext, t, sizeof(t));
|
|
||||||
|
|
||||||
// Empty buffer, place r.x in little-endian.
|
|
||||||
memset(buf, 0, sizeof(buf));
|
|
||||||
BN_bn2bin(x, buf);
|
|
||||||
endiannessConvert((unsigned char *) buf, sizeof(buf));
|
|
||||||
|
|
||||||
// Hash chunk of data.
|
|
||||||
SHA1_Update(&hContext, buf, sizeof(buf));
|
|
||||||
|
|
||||||
// Empty buffer, place r.y in little-endian.
|
|
||||||
memset(buf, 0, sizeof(buf));
|
|
||||||
BN_bn2bin(y, buf);
|
|
||||||
endiannessConvert((unsigned char *) buf, sizeof(buf));
|
|
||||||
|
|
||||||
// Hash chunk of data.
|
|
||||||
SHA1_Update(&hContext, buf, sizeof(buf));
|
|
||||||
|
|
||||||
// Store the final message from hContext in md.
|
|
||||||
SHA1_Final(md, &hContext);
|
|
||||||
|
|
||||||
// h = (First-32(SHA1(pRaw, r.x, r.y)) >> 4
|
|
||||||
hash[0] = (md[0] | (md[1] << 8) | (md[2] << 16) | (md[3] << 24)) >> 4;
|
|
||||||
hash[0] &= 0xfffffff;
|
|
||||||
|
|
||||||
/* s = privateKey * hash + c; */
|
|
||||||
// s = privateKey;
|
|
||||||
BN_copy(s, privateKey);
|
|
||||||
|
|
||||||
// s *= hash;
|
|
||||||
BN_mul_word(s, hash[0]);
|
|
||||||
|
|
||||||
// BN_mod_add() adds a to b % m and places the non-negative result in r.
|
|
||||||
// s = |s + c % order|;
|
|
||||||
BN_mod_add(s, s, c, order, ctx);
|
|
||||||
|
|
||||||
// Convert s from BigNum back to bytecode and reverse the endianness.
|
|
||||||
unsigned long sig[2]{};
|
|
||||||
|
|
||||||
BN_bn2bin(s, (unsigned char *)sig);
|
|
||||||
endiannessConvert((unsigned char *) sig, BN_num_bytes(s));
|
|
||||||
|
|
||||||
// Pack product key.
|
|
||||||
pack(bKey, pRaw, hash, sig);
|
|
||||||
|
|
||||||
printf("PID: %.8lX\nHash: %.8lX\nSignature: %.8lX %.8lX\n\n", pRaw[0], hash[0], sig[1], sig[0]);
|
|
||||||
} while (bKey[3] >= 0x62A32); // Loop in case signature part will make the CD-key longer than 25 characters.
|
|
||||||
|
|
||||||
// Convert the key to Base24.
|
|
||||||
base24(pKey, bKey);
|
|
||||||
|
|
||||||
BN_free(c);
|
|
||||||
BN_free(s);
|
|
||||||
BN_free(x);
|
|
||||||
BN_free(y);
|
|
||||||
|
|
||||||
BN_CTX_free(ctx);
|
|
||||||
EC_POINT_free(r);
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* PK: VX8CG-8KC6V-PVPMD-GKPPH-GC7W8
|
* PK: VX8CG-8KC6V-PVPMD-GKPPH-GC7W8
|
||||||
*
|
*
|
||||||
|
@ -404,7 +110,7 @@ void generateKey(unsigned char *pKey, EC_GROUP *eCurve, EC_POINT *generator, BIG
|
||||||
* To convert a 25-digit key to binary data, we need to:
|
* To convert a 25-digit key to binary data, we need to:
|
||||||
* 1. Think of the key as of an array of bytes. Then convert the concatenated key VX8CG8KC6VPVPMDGKPPHGC7W8
|
* 1. Think of the key as of an array of bytes. Then convert the concatenated key VX8CG8KC6VPVPMDGKPPHGC7W8
|
||||||
* into its Base24 representation ('B' = 0, 'C' = 1, 'D' = 2, ...) -> [ 13, 15, 22, 1, 4, ... ].
|
* into its Base24 representation ('B' = 0, 'C' = 1, 'D' = 2, ...) -> [ 13, 15, 22, 1, 4, ... ].
|
||||||
* 2. Compute the decoded array in little-endian.
|
* 2. Compute the decoded array in little-endiannessConvert.
|
||||||
* 3. The decoded result is divided into sections:
|
* 3. The decoded result is divided into sections:
|
||||||
* - 12 bits -> OS Family
|
* - 12 bits -> OS Family
|
||||||
* - 31 bits -> Hash
|
* - 31 bits -> Hash
|
||||||
|
@ -430,92 +136,11 @@ void generateKey(unsigned char *pKey, EC_GROUP *eCurve, EC_POINT *generator, BIG
|
||||||
* CCCCCCC | least significant six digits of Raw Product Key
|
* CCCCCCC | least significant six digits of Raw Product Key
|
||||||
* | plus check digit (see below)
|
* | plus check digit (see below)
|
||||||
* DD | index of the public key used to verify the
|
* DD | index of the public key used to verify the
|
||||||
* | Product Key. Example: 22 for PRO version and 23 for VLK version
|
* | Product Key. Example: 22 for Professional keys; 23 for VLK keys
|
||||||
* EEE | random value (used for phone activation, different installation IDs are generated)
|
* EEE | random value (used for phone activation, different installation IDs are generated)
|
||||||
*/
|
*/
|
||||||
|
|
||||||
|
/*
|
||||||
int main() {
|
|
||||||
hConsole = GetStdHandle(STD_OUTPUT_HANDLE);
|
|
||||||
|
|
||||||
// Initialize BIGNUM and BIGNUMCTX structures.
|
|
||||||
// BIGNUM - Large numbers
|
|
||||||
// BIGNUMCTX - Context large numbers (temporary)
|
|
||||||
BIGNUM *a, *b, *p, *generatorX, *generatorY, *publicKeyX, *publicKeyY, *genOrder, *privateKey;
|
|
||||||
BN_CTX *context;
|
|
||||||
|
|
||||||
// Microsoft Product Key identification program uses a public key stored in pidgen.dll's BINK resource,
|
|
||||||
// which is an Elliptic Curve Cryptography (ECC) public key. It can be decomposed into a following mathematical task:
|
|
||||||
|
|
||||||
// We're presented with an elliptic curve, a multivariable function y(x; p; a; b), where
|
|
||||||
// y^2 % p = x^3 + ax + b % p.
|
|
||||||
a = BN_new();
|
|
||||||
b = BN_new();
|
|
||||||
p = BN_new();
|
|
||||||
|
|
||||||
// Public key will consist of the resulting (x; y) values.
|
|
||||||
publicKeyX = BN_new();
|
|
||||||
publicKeyY = BN_new();
|
|
||||||
|
|
||||||
// G(x; y) is a generator function, its return value represents a point on the elliptic curve.
|
|
||||||
generatorX = BN_new();
|
|
||||||
generatorY = BN_new();
|
|
||||||
|
|
||||||
// We cannot produce a valid key without knowing the private key k. The reason for this is that
|
|
||||||
// we need the result of the function K(x; y) = kG(x; y).
|
|
||||||
privateKey = BN_new();
|
|
||||||
|
|
||||||
// We can, however, validate any given key using the available public key: {p, a, b, G, K}.
|
|
||||||
// genOrder the order of the generator G, a value we have to reverse -> Schoof's Algorithm.
|
|
||||||
genOrder = BN_new();
|
|
||||||
|
|
||||||
// Context variable
|
|
||||||
context = BN_CTX_new();
|
|
||||||
|
|
||||||
|
|
||||||
/* Public data */
|
|
||||||
// Data taken from pidgen.dll BINK-resources
|
|
||||||
BN_hex2bn(&p, "92ddcf14cb9e71f4489a2e9ba350ae29454d98cb93bdbcc07d62b502ea12238ee904a8b20d017197aae0c103b32713a9");
|
|
||||||
|
|
||||||
BN_set_word(a, 1);
|
|
||||||
BN_set_word(b, 0);
|
|
||||||
|
|
||||||
// Base point G (Generator)
|
|
||||||
BN_hex2bn(&generatorX, "46E3775ECE21B0898D39BEA57050D422A0AF989E497962BAEE2CB17E0A28D5360D5476B8DC966443E37A14F1AEF37742");
|
|
||||||
BN_hex2bn(&generatorY, "7C8E741D2C34F4478E325469CD491603D807222C9C4AC09DDB2B31B3CE3F7CC191B3580079932BC6BEF70BE27604F65E");
|
|
||||||
|
|
||||||
// Inverse of the public key
|
|
||||||
BN_hex2bn(&publicKeyX, "5D8DBE75198015EC41C45AAB6143542EB098F6A5CC9CE4178A1B8A1E7ABBB5BC64DF64FAF6177DC1B0988AB00BA94BF8");
|
|
||||||
BN_hex2bn(&publicKeyY, "23A2909A0B4803C89F910C7191758B48746CEA4D5FF07667444ACDB9512080DBCA55E6EBF30433672B894F44ACE92BFA");
|
|
||||||
|
|
||||||
|
|
||||||
/* Computed data */
|
|
||||||
// The order of G was computed in 18 hours using a Pentium III 450
|
|
||||||
BN_hex2bn(&genOrder, "DB6B4C58EFBAFD");
|
|
||||||
|
|
||||||
// The private key was computed in 10 hours using a Pentium III 450
|
|
||||||
BN_hex2bn(&privateKey, "565B0DFF8496C8");
|
|
||||||
|
|
||||||
|
|
||||||
/* Elliptical Curve calculations. */
|
|
||||||
// The group is defined via Fp = all integers [0; p - 1], where p is prime.
|
|
||||||
// The function EC_POINT_set_affine_coordinates() sets the x and y coordinates for the point p defined over the curve given in group.
|
|
||||||
EC_GROUP *eCurve = EC_GROUP_new_curve_GFp(p, a, b, context);
|
|
||||||
|
|
||||||
// Create new point for the generator on the elliptic curve and set its coordinates to (genX; genY).
|
|
||||||
EC_POINT *genPoint = EC_POINT_new(eCurve);
|
|
||||||
EC_POINT_set_affine_coordinates(eCurve, genPoint, generatorX, generatorY, context);
|
|
||||||
|
|
||||||
// Create new point for the public key on the elliptic curve and set its coordinates to (pubX; pubY).
|
|
||||||
EC_POINT *pub = EC_POINT_new(eCurve);
|
|
||||||
EC_POINT_set_affine_coordinates(eCurve, pub, publicKeyX, publicKeyY, context);
|
|
||||||
|
|
||||||
|
|
||||||
/* Generate a key. */
|
|
||||||
unsigned char pKey[26]{};
|
|
||||||
unsigned long pRaw[1]{};
|
|
||||||
|
|
||||||
/*
|
|
||||||
* Decoding the Product Key results in an example byte sequence.
|
* Decoding the Product Key results in an example byte sequence.
|
||||||
*
|
*
|
||||||
* 0x6F 0xFA 0x95 0x45 0xFC 0x75 0xB5 0x52 0xBB 0xEF 0xB1 0x17 0xDA 0xCD 0x00
|
* 0x6F 0xFA 0x95 0x45 0xFC 0x75 0xB5 0x52 0xBB 0xEF 0xB1 0x17 0xDA 0xCD 0x00
|
||||||
|
@ -523,7 +148,7 @@ int main() {
|
||||||
* Of these 15 bytes the least significant four bytes contain the Raw
|
* Of these 15 bytes the least significant four bytes contain the Raw
|
||||||
* Product Key in little endian byte order. The least significant bit is
|
* Product Key in little endian byte order. The least significant bit is
|
||||||
* removed by shifting this 32-bit value (0x4595FA6F - remember the
|
* removed by shifting this 32-bit value (0x4595FA6F - remember the
|
||||||
* little endian byte order) to the left by one bit position, resulting
|
* little endiannessConvert byte order) to the left by one bit position, resulting
|
||||||
* in a Raw Product Key of 0x22CAFD37, or
|
* in a Raw Product Key of 0x22CAFD37, or
|
||||||
*
|
*
|
||||||
* 583728439
|
* 583728439
|
||||||
|
@ -531,16 +156,22 @@ int main() {
|
||||||
* in decimal notation.
|
* in decimal notation.
|
||||||
*/
|
*/
|
||||||
|
|
||||||
|
int main() {
|
||||||
|
char pKey[PK_LENGTH + NULL_TERMINATOR]{};
|
||||||
|
ul32 pRaw[1]{}, nAmount = 1;
|
||||||
|
|
||||||
|
hConsole = GetStdHandle(STD_OUTPUT_HANDLE);
|
||||||
|
|
||||||
SetConsoleTitleA("Windows XP VLK Keygen");
|
SetConsoleTitleA("Windows XP VLK Keygen");
|
||||||
|
|
||||||
system("cls");
|
system("cls");
|
||||||
cprintf("Windows XP VLK Keygen\n\n", 0x08);
|
cprintf("Windows XP VLK Keygen\n\n", 0x08);
|
||||||
|
|
||||||
cprintf("Principle of Operation:\n", 0x0C);
|
cprintf("Principle of Operation:\n", 0x0C);
|
||||||
printf("We need a valid Raw Product Key to generate the Product ID in form of AAAAA-BBB-CCCCCCS-DDEEE.\n\n");
|
printf("We need a valid Raw Product Key to generate a Product ID in form of AAAAA-BBB-CCCCCCS-DDEEE.\n\n");
|
||||||
printf("AAAAA is the Windows XP Series constant - different for each version.\n");
|
printf("AAAAA is the Windows XP Series constant - different for each version.\n");
|
||||||
printf("Raw Product Key directly represents the BBB-CCCCCC part of the Product ID.\n");
|
printf("Raw Product Key directly represents the BBB-CCCCCC part of the Product ID.\n");
|
||||||
printf("S is a \"check bit\": it's picked so that the sum of all C digits with it added makes a number divisble by 7.\n");
|
printf("S is a \"check bit\": it's picked so that the sum of all C digits with it added makes a number divisible by 7.\n");
|
||||||
printf("DD is the index of the public key used to verify the Product Key.\n");
|
printf("DD is the index of the public key used to verify the Product Key.\n");
|
||||||
printf("EEE is a random number used to generate a different Installation ID each time.\n\n");
|
printf("EEE is a random number used to generate a different Installation ID each time.\n\n");
|
||||||
|
|
||||||
|
@ -561,26 +192,58 @@ int main() {
|
||||||
cprintf("Input Raw Product Key BBB-CCCCCC WITHOUT DASHES in range [100-000000; 999-999999]: ", 0x0E);
|
cprintf("Input Raw Product Key BBB-CCCCCC WITHOUT DASHES in range [100-000000; 999-999999]: ", 0x0E);
|
||||||
scanf_s("%lu", pRaw);
|
scanf_s("%lu", pRaw);
|
||||||
|
|
||||||
|
system("cls");
|
||||||
|
|
||||||
|
printf("Raw Product Key: ");
|
||||||
|
cprintf("%d-%d\n", 0x0E, pRaw[0] / 1'000'000, pRaw[0] % 1'000'000);
|
||||||
|
printf("How many keys would you like to generate? ");
|
||||||
|
scanf_s("%lu", &nAmount);
|
||||||
|
|
||||||
printf("\n");
|
printf("\n");
|
||||||
|
|
||||||
|
// We cannot produce a valid key without knowing the private key k. The reason for this is that
|
||||||
|
// we need the result of the function K(x; y) = kG(x; y).
|
||||||
|
BIGNUM *privateKey = BN_new();
|
||||||
|
|
||||||
|
// We can, however, validate any given key using the available public key: {p, a, b, G, K}.
|
||||||
|
// genOrder the order of the generator G, a value we have to reverse -> Schoof's Algorithm.
|
||||||
|
BIGNUM *genOrder = BN_new();
|
||||||
|
|
||||||
|
/* Computed data */
|
||||||
|
BN_hex2bn(&genOrder, genOrderXP);
|
||||||
|
BN_hex2bn(&privateKey, privateKeyXP);
|
||||||
|
|
||||||
|
EC_POINT *genPoint, *pubPoint;
|
||||||
|
EC_GROUP *eCurve = initializeEllipticCurve(
|
||||||
|
pXP,
|
||||||
|
aXP,
|
||||||
|
bXP,
|
||||||
|
genXXP,
|
||||||
|
genYXP,
|
||||||
|
pubXXP,
|
||||||
|
pubYXP,
|
||||||
|
genOrder,
|
||||||
|
privateKey,
|
||||||
|
&genPoint,
|
||||||
|
&pubPoint
|
||||||
|
);
|
||||||
|
|
||||||
|
// Shift left once.
|
||||||
pRaw[0] <<= 1;
|
pRaw[0] <<= 1;
|
||||||
|
|
||||||
for (int i = 0; i < 10; i++) {
|
for (int i = 0; i < nAmount; i++) {
|
||||||
cprintf("Product Key %d:\n", 0x08, i + 1);
|
cprintf("Product Key %d:\n", 0x08, i + 1);
|
||||||
|
|
||||||
generateKey(pKey, eCurve, genPoint, genOrder, privateKey, pRaw);
|
// Generate the key.
|
||||||
|
generateXPKey((byte *)pKey, eCurve, genPoint, genOrder, privateKey, pRaw);
|
||||||
printProductKey(pKey);
|
printProductKey(pKey);
|
||||||
|
|
||||||
printf("\n\n");
|
printf("\n\n");
|
||||||
|
|
||||||
// Verify the key
|
// Verify the key.
|
||||||
verifyKey(eCurve, genPoint, pub, (char *) pKey);
|
verifyXPKey(eCurve, genPoint, pubPoint, pKey);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
// Cleanup
|
|
||||||
BN_CTX_free(context);
|
|
||||||
|
|
||||||
system("pause");
|
system("pause");
|
||||||
|
|
||||||
return 0;
|
return 0;
|
||||||
|
|
|
@ -0,0 +1,216 @@
|
||||||
|
//
|
||||||
|
// Created by Andrew on 09/04/2023.
|
||||||
|
//
|
||||||
|
|
||||||
|
#include "header.h"
|
||||||
|
|
||||||
|
void unpackServer(ul32 *osFamily, ul32 *hash, ul32 *sig, ul32 *prefix, ul32 *raw) {
|
||||||
|
osFamily[0] = raw[0] & 0x7ff;
|
||||||
|
hash[0] = ((raw[0] >> 11) | (raw[1] << 21)) & 0x7fffffff;
|
||||||
|
sig[0] = (raw[1] >> 10) | (raw[2] << 22);
|
||||||
|
sig[1] = ((raw[2] >> 10) | (raw[3] << 22)) & 0x3fffffff;
|
||||||
|
prefix[0] = (raw[3] >> 8) & 0x3ff;
|
||||||
|
}
|
||||||
|
|
||||||
|
void packServer(ul32 *raw, ul32 *osFamily, ul32 *hash, ul32 *sig, ul32 *prefix) {
|
||||||
|
raw[0] = osFamily[0] | (hash[0] << 11);
|
||||||
|
raw[1] = (hash[0] >> 21) | (sig[0] << 10);
|
||||||
|
raw[2] = (sig[0] >> 22) | (sig[1] << 10);
|
||||||
|
raw[3] = (sig[1] >> 22) | (prefix[0] << 8);
|
||||||
|
}
|
||||||
|
|
||||||
|
void verifyServerKey(EC_GROUP *eCurve, EC_POINT *generator, EC_POINT *public_key, char *cdKey) {
|
||||||
|
byte key[25];
|
||||||
|
int i, j, k;
|
||||||
|
|
||||||
|
BN_CTX *ctx = BN_CTX_new();
|
||||||
|
|
||||||
|
for (i = 0, k = 0; i < strlen(cdKey); i++) {
|
||||||
|
for (j = 0; j < 24; j++) {
|
||||||
|
if (cdKey[i] != '-' && cdKey[i] == charset[j]) {
|
||||||
|
key[k++] = j;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
assert(j < 24);
|
||||||
|
}
|
||||||
|
if (k >= 25) break;
|
||||||
|
}
|
||||||
|
|
||||||
|
ul32 bkey[4] = {0};
|
||||||
|
ul32 osfamily[1], hash[1], sig[2], prefix[1];
|
||||||
|
unbase24(bkey, key);
|
||||||
|
printf("%.8x %.8x %.8x %.8x\n", bkey[3], bkey[2], bkey[1], bkey[0]);
|
||||||
|
unpackServer(osfamily, hash, sig, prefix, bkey);
|
||||||
|
|
||||||
|
printf("OS Family: %u\nHash: %.8x\nSig: %.8x %.8x\nPrefix: %.8x\n", osfamily[0], hash[0], sig[1], sig[0], prefix[0]);
|
||||||
|
|
||||||
|
byte buf[FIELD_BYTES_2003], md[SHA_DIGEST_LENGTH];
|
||||||
|
ul32 h1[2];
|
||||||
|
SHA_CTX h_ctx;
|
||||||
|
|
||||||
|
/* h1 = SHA-1(5D || OS Family || Hash || Prefix || 00 00) */
|
||||||
|
SHA1_Init(&h_ctx);
|
||||||
|
buf[0] = 0x5d;
|
||||||
|
buf[1] = osfamily[0] & 0xff;
|
||||||
|
buf[2] = (osfamily[0] & 0xff00) >> 8;
|
||||||
|
buf[3] = hash[0] & 0xff;
|
||||||
|
buf[4] = (hash[0] & 0xff00) >> 8;
|
||||||
|
buf[5] = (hash[0] & 0xff0000) >> 16;
|
||||||
|
buf[6] = (hash[0] & 0xff000000) >> 24;
|
||||||
|
buf[7] = prefix[0] & 0xff;
|
||||||
|
buf[8] = (prefix[0] & 0xff00) >> 8;
|
||||||
|
buf[9] = buf[10] = 0;
|
||||||
|
SHA1_Update(&h_ctx, buf, 11);
|
||||||
|
SHA1_Final(md, &h_ctx);
|
||||||
|
h1[0] = md[0] | (md[1] << 8) | (md[2] << 16) | (md[3] << 24);
|
||||||
|
h1[1] = (md[4] | (md[5] << 8) | (md[6] << 16) | (md[7] << 24)) >> 2;
|
||||||
|
h1[1] &= 0x3FFFFFFF;
|
||||||
|
printf("h1: %.8x %.8x\n", h1[1], h1[0]);
|
||||||
|
|
||||||
|
BIGNUM *s, *h, *x, *y;
|
||||||
|
x = BN_new();
|
||||||
|
y = BN_new();
|
||||||
|
endiannessConvert((byte *) sig, 8);
|
||||||
|
endiannessConvert((byte *) h1, 8);
|
||||||
|
s = BN_bin2bn((byte *)sig, 8, NULL);
|
||||||
|
h = BN_bin2bn((byte *)h1, 8, NULL);
|
||||||
|
|
||||||
|
EC_POINT *r = EC_POINT_new(eCurve);
|
||||||
|
EC_POINT *t = EC_POINT_new(eCurve);
|
||||||
|
/* r = sig*(sig*generator + h1*public_key) */
|
||||||
|
EC_POINT_mul(eCurve, t, NULL, generator, s, ctx);
|
||||||
|
EC_POINT_mul(eCurve, r, NULL, public_key, h, ctx);
|
||||||
|
EC_POINT_add(eCurve, r, r, t, ctx);
|
||||||
|
EC_POINT_mul(eCurve, r, NULL, r, s, ctx);
|
||||||
|
EC_POINT_get_affine_coordinates_GFp(eCurve, r, x, y, ctx);
|
||||||
|
|
||||||
|
ul32 h2[1];
|
||||||
|
/* h2 = SHA-1(79 || OS Family || r.x || r.y) */
|
||||||
|
SHA1_Init(&h_ctx);
|
||||||
|
buf[0] = 0x79;
|
||||||
|
buf[1] = osfamily[0] & 0xff;
|
||||||
|
buf[2] = (osfamily[0] & 0xff00) >> 8;
|
||||||
|
SHA1_Update(&h_ctx, buf, 3);
|
||||||
|
|
||||||
|
memset(buf, 0, FIELD_BYTES_2003);
|
||||||
|
BN_bn2bin(x, buf);
|
||||||
|
endiannessConvert((byte *) buf, FIELD_BYTES_2003);
|
||||||
|
SHA1_Update(&h_ctx, buf, FIELD_BYTES_2003);
|
||||||
|
|
||||||
|
memset(buf, 0, FIELD_BYTES_2003);
|
||||||
|
BN_bn2bin(y, buf);
|
||||||
|
endiannessConvert((byte *) buf, FIELD_BYTES_2003);
|
||||||
|
SHA1_Update(&h_ctx, buf, FIELD_BYTES_2003);
|
||||||
|
|
||||||
|
SHA1_Final(md, &h_ctx);
|
||||||
|
h2[0] = (md[0] | (md[1] << 8) | (md[2] << 16) | (md[3] << 24)) & 0x7fffffff;
|
||||||
|
printf("Calculated hash: %.8x\n", h2[0]);
|
||||||
|
|
||||||
|
if (h2[0] == hash[0]) printf("Key VALID\n");
|
||||||
|
else printf("Key invalid\n");
|
||||||
|
|
||||||
|
BN_free(s);
|
||||||
|
BN_free(h);
|
||||||
|
BN_free(x);
|
||||||
|
BN_free(y);
|
||||||
|
EC_POINT_free(r);
|
||||||
|
EC_POINT_free(t);
|
||||||
|
BN_CTX_free(ctx);
|
||||||
|
}
|
||||||
|
|
||||||
|
void generateServerKey(byte *pKey, EC_GROUP *eCurve, EC_POINT *generator, BIGNUM *order, BIGNUM *privateKey, ul32 *osFamily, ul32 *prefix) {
|
||||||
|
BN_CTX *ctx = BN_CTX_new();
|
||||||
|
|
||||||
|
BIGNUM *k = BN_new();
|
||||||
|
BIGNUM *s = BN_new();
|
||||||
|
BIGNUM *x = BN_new();
|
||||||
|
BIGNUM *y = BN_new();
|
||||||
|
BIGNUM *b = BN_new();
|
||||||
|
EC_POINT *r = EC_POINT_new(eCurve);
|
||||||
|
|
||||||
|
ul32 bkey[4];
|
||||||
|
byte buf[FIELD_BYTES_2003], md[20];
|
||||||
|
ul32 h1[2];
|
||||||
|
ul32 hash[1], sig[2];
|
||||||
|
|
||||||
|
SHA_CTX h_ctx;
|
||||||
|
|
||||||
|
for (;;) {
|
||||||
|
/* r = k*generator */
|
||||||
|
BN_rand(k, FIELD_BITS_2003, -1, 0);
|
||||||
|
EC_POINT_mul(eCurve, r, NULL, generator, k, ctx);
|
||||||
|
EC_POINT_get_affine_coordinates(eCurve, r, x, y, ctx);
|
||||||
|
|
||||||
|
/* hash = SHA-1(79 || OS Family || r.x || r.y) */
|
||||||
|
SHA1_Init(&h_ctx);
|
||||||
|
buf[0] = 0x79;
|
||||||
|
buf[1] = osFamily[0] & 0xff;
|
||||||
|
buf[2] = (osFamily[0] & 0xff00) >> 8;
|
||||||
|
SHA1_Update(&h_ctx, buf, 3);
|
||||||
|
|
||||||
|
memset(buf, 0, FIELD_BYTES_2003);
|
||||||
|
BN_bn2bin(x, buf);
|
||||||
|
endiannessConvert((byte *) buf, FIELD_BYTES_2003);
|
||||||
|
SHA1_Update(&h_ctx, buf, FIELD_BYTES_2003);
|
||||||
|
|
||||||
|
memset(buf, 0, FIELD_BYTES_2003);
|
||||||
|
BN_bn2bin(y, buf);
|
||||||
|
endiannessConvert((byte *) buf, FIELD_BYTES_2003);
|
||||||
|
SHA1_Update(&h_ctx, buf, FIELD_BYTES_2003);
|
||||||
|
|
||||||
|
SHA1_Final(md, &h_ctx);
|
||||||
|
hash[0] = (md[0] | (md[1] << 8) | (md[2] << 16) | (md[3] << 24)) & 0x7fffffff;
|
||||||
|
|
||||||
|
/* h1 = SHA-1(5D || OS Family || Hash || Prefix || 00 00) */
|
||||||
|
SHA1_Init(&h_ctx);
|
||||||
|
buf[0] = 0x5d;
|
||||||
|
buf[1] = osFamily[0] & 0xff;
|
||||||
|
buf[2] = (osFamily[0] & 0xff00) >> 8;
|
||||||
|
buf[3] = hash[0] & 0xff;
|
||||||
|
buf[4] = (hash[0] & 0xff00) >> 8;
|
||||||
|
buf[5] = (hash[0] & 0xff0000) >> 16;
|
||||||
|
buf[6] = (hash[0] & 0xff000000) >> 24;
|
||||||
|
buf[7] = prefix[0] & 0xff;
|
||||||
|
buf[8] = (prefix[0] & 0xff00) >> 8;
|
||||||
|
buf[9] = buf[10] = 0;
|
||||||
|
SHA1_Update(&h_ctx, buf, 11);
|
||||||
|
SHA1_Final(md, &h_ctx);
|
||||||
|
h1[0] = md[0] | (md[1] << 8) | (md[2] << 16) | (md[3] << 24);
|
||||||
|
h1[1] = (md[4] | (md[5] << 8) | (md[6] << 16) | (md[7] << 24)) >> 2;
|
||||||
|
h1[1] &= 0x3FFFFFFF;
|
||||||
|
printf("h1: %.8x %.8x\n", h1[1], h1[0]);
|
||||||
|
|
||||||
|
/* s = ( -h1*privateKey + sqrt( (h1*privateKey)^2 + 4k ) ) / 2 */
|
||||||
|
endiannessConvert((byte *) h1, 8);
|
||||||
|
BN_bin2bn((byte *)h1, 8, b);
|
||||||
|
BN_mod_mul(b, b, privateKey, order, ctx);
|
||||||
|
BN_copy(s, b);
|
||||||
|
BN_mod_sqr(s, s, order, ctx);
|
||||||
|
BN_lshift(k, k, 2);
|
||||||
|
BN_add(s, s, k);
|
||||||
|
BN_mod_sqrt(s, s, order, ctx);
|
||||||
|
BN_mod_sub(s, s, b, order, ctx);
|
||||||
|
if (BN_is_odd(s)) {
|
||||||
|
BN_add(s, s, order);
|
||||||
|
}
|
||||||
|
BN_rshift1(s, s);
|
||||||
|
sig[0] = sig[1] = 0;
|
||||||
|
BN_bn2bin(s, (byte *)sig);
|
||||||
|
endiannessConvert((byte *) sig, BN_num_bytes(s));
|
||||||
|
if (sig[1] < 0x40000000) break;
|
||||||
|
}
|
||||||
|
packServer(bkey, osFamily, hash, sig, prefix);
|
||||||
|
printf("OS family: %u\nHash: %.8x\nSig: %.8x %.8x\nPrefix: %.8x\n", osFamily[0], hash[0], sig[1], sig[0], prefix[0]);
|
||||||
|
printf("%.8x %.8x %.8x %.8x\n", bkey[3], bkey[2], bkey[1], bkey[0]);
|
||||||
|
base24(pKey, bkey);
|
||||||
|
|
||||||
|
BN_free(k);
|
||||||
|
BN_free(s);
|
||||||
|
BN_free(x);
|
||||||
|
BN_free(y);
|
||||||
|
BN_free(b);
|
||||||
|
EC_POINT_free(r);
|
||||||
|
|
||||||
|
BN_CTX_free(ctx);
|
||||||
|
|
||||||
|
}
|
|
@ -0,0 +1,99 @@
|
||||||
|
//
|
||||||
|
// Created by Andrew on 09/04/2023.
|
||||||
|
//
|
||||||
|
|
||||||
|
#include "header.h"
|
||||||
|
|
||||||
|
/* Colored output */
|
||||||
|
void cprintf(const char *Format, int nColor, ...) {
|
||||||
|
va_list vList;
|
||||||
|
|
||||||
|
va_start(vList, nColor);
|
||||||
|
|
||||||
|
SetConsoleTextAttribute(hConsole, nColor);
|
||||||
|
vprintf(Format, vList);
|
||||||
|
SetConsoleTextAttribute(hConsole, 0x0F);
|
||||||
|
|
||||||
|
va_end(vList);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Convert data between endianness types. */
|
||||||
|
void endiannessConvert(byte *data, int length) {
|
||||||
|
for (int i = 0; i < length / 2; i++) {
|
||||||
|
byte temp = data[i];
|
||||||
|
data[i] = data[length - i - 1];
|
||||||
|
data[length - i - 1] = temp;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
EC_GROUP *initializeEllipticCurve(
|
||||||
|
const char *pSel,
|
||||||
|
long aSel,
|
||||||
|
long bSel,
|
||||||
|
const char *generatorXSel,
|
||||||
|
const char *generatorYSel,
|
||||||
|
const char *publicKeyXSel,
|
||||||
|
const char *publicKeyYSel,
|
||||||
|
BIGNUM *genOrderSel,
|
||||||
|
BIGNUM *privateKeySel,
|
||||||
|
EC_POINT **genPoint,
|
||||||
|
EC_POINT **pubPoint
|
||||||
|
) {
|
||||||
|
// Initialize BIGNUM and BIGNUMCTX structures.
|
||||||
|
// BIGNUM - Large numbers
|
||||||
|
// BIGNUMCTX - Context large numbers (temporary)
|
||||||
|
BIGNUM *a, *b, *p, *generatorX, *generatorY, *publicKeyX, *publicKeyY;
|
||||||
|
BN_CTX *context;
|
||||||
|
|
||||||
|
// Microsoft Product Key identification program uses a public key stored in pidgen.dll's BINK resource,
|
||||||
|
// which is an Elliptic Curve Cryptography (ECC) public key. It can be decomposed into a following mathematical task:
|
||||||
|
|
||||||
|
// We're presented with an elliptic curve, a multivariable function y(x; p; a; b), where
|
||||||
|
// y^2 % p = x^3 + ax + b % p.
|
||||||
|
a = BN_new();
|
||||||
|
b = BN_new();
|
||||||
|
p = BN_new();
|
||||||
|
|
||||||
|
// Public key will consist of the resulting (x; y) values.
|
||||||
|
publicKeyX = BN_new();
|
||||||
|
publicKeyY = BN_new();
|
||||||
|
|
||||||
|
// G(x; y) is a generator function, its return value represents a point on the elliptic curve.
|
||||||
|
generatorX = BN_new();
|
||||||
|
generatorY = BN_new();
|
||||||
|
|
||||||
|
// Context variable
|
||||||
|
context = BN_CTX_new();
|
||||||
|
|
||||||
|
/* Public data */
|
||||||
|
BN_hex2bn(&p, pSel);
|
||||||
|
BN_set_word(a, aSel);
|
||||||
|
BN_set_word(b, bSel);
|
||||||
|
BN_hex2bn(&generatorX, generatorXSel);
|
||||||
|
BN_hex2bn(&generatorY, generatorYSel);
|
||||||
|
|
||||||
|
BN_hex2bn(&publicKeyX, publicKeyXSel);
|
||||||
|
BN_hex2bn(&publicKeyY, publicKeyYSel);
|
||||||
|
|
||||||
|
/* Elliptical Curve calculations. */
|
||||||
|
// The group is defined via Fp = all integers [0; p - 1], where p is prime.
|
||||||
|
// The function EC_POINT_set_affine_coordinates() sets the x and y coordinates for the point p defined over the curve given in group.
|
||||||
|
EC_GROUP *eCurve = EC_GROUP_new_curve_GFp(p, a, b, context);
|
||||||
|
|
||||||
|
// Create new point for the generator on the elliptic curve and set its coordinates to (genX; genY).
|
||||||
|
*genPoint = EC_POINT_new(eCurve);
|
||||||
|
EC_POINT_set_affine_coordinates(eCurve, *genPoint, generatorX, generatorY, context);
|
||||||
|
|
||||||
|
// Create new point for the public key on the elliptic curve and set its coordinates to (pubX; pubY).
|
||||||
|
*pubPoint = EC_POINT_new(eCurve);
|
||||||
|
EC_POINT_set_affine_coordinates(eCurve, *pubPoint, publicKeyX, publicKeyY, context);
|
||||||
|
|
||||||
|
// If generator and public key points are not on the elliptic curve, either the generator or the public key values are incorrect.
|
||||||
|
assert(EC_POINT_is_on_curve(eCurve, *genPoint, context) == 1);
|
||||||
|
assert(EC_POINT_is_on_curve(eCurve, *pubPoint, context) == 1);
|
||||||
|
|
||||||
|
// Cleanup
|
||||||
|
BN_CTX_free(context);
|
||||||
|
|
||||||
|
return eCurve;
|
||||||
|
}
|
|
@ -0,0 +1,260 @@
|
||||||
|
//
|
||||||
|
// Created by Andrew on 09/04/2023.
|
||||||
|
//
|
||||||
|
|
||||||
|
#include "header.h"
|
||||||
|
|
||||||
|
/* Unpacks the Product Key. */
|
||||||
|
void unpackXP(ul32 *serial, ul32 *hash, ul32 *sig, ul32 *raw) {
|
||||||
|
|
||||||
|
// We're assuming that the quantity of information within the product key is at most 114 bits.
|
||||||
|
// log2(24^25) = 114.
|
||||||
|
|
||||||
|
// Serial = Bits [0..30] -> 31 bits
|
||||||
|
serial[0] = raw[0] & 0x7fffffff;
|
||||||
|
|
||||||
|
// Hash (e) = Bits [31..58] -> 28 bits
|
||||||
|
hash[0] = ((raw[0] >> 31) | (raw[1] << 1)) & 0xfffffff;
|
||||||
|
|
||||||
|
// Signature (s) = Bits [59..113] -> 55 bits
|
||||||
|
sig[0] = (raw[1] >> 27) | (raw[2] << 5);
|
||||||
|
sig[1] = (raw[2] >> 27) | (raw[3] << 5);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Repacks the Product Key. */
|
||||||
|
void packXP(ul32 *raw, ul32 *serial, ul32 *hash, ul32 *sig) {
|
||||||
|
raw[0] = serial[0] | ((hash[0] & 1) << 31);
|
||||||
|
raw[1] = (hash[0] >> 1) | ((sig[0] & 0x1f) << 27);
|
||||||
|
raw[2] = (sig[0] >> 5) | (sig[1] << 27);
|
||||||
|
raw[3] = sig[1] >> 5;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Verify Product Key */
|
||||||
|
void verifyXPKey(EC_GROUP *eCurve, EC_POINT *generator, EC_POINT *publicKey, char *cdKey) {
|
||||||
|
byte pKey[PK_LENGTH];
|
||||||
|
|
||||||
|
BN_CTX *context = BN_CTX_new();
|
||||||
|
|
||||||
|
// Remove dashes from the CD-pKey.
|
||||||
|
for (int i = 0, k = 0; i < strlen(cdKey) && k < PK_LENGTH; i++) {
|
||||||
|
for (int j = 0; j < PK_LENGTH - 1; j++) {
|
||||||
|
if (cdKey[i] != '-' && cdKey[i] == charset[j]) {
|
||||||
|
pKey[k++] = j;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (k >= PK_LENGTH) break;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Convert Base24 CD-pKey to bytecode.
|
||||||
|
ul32 bKey[4]{};
|
||||||
|
ul32 pID[1], hash[1], sig[2];
|
||||||
|
|
||||||
|
unbase24(bKey, pKey);
|
||||||
|
|
||||||
|
// Output CD-pKey bytecode.
|
||||||
|
printf("Bytecode: %.8lX %.8lX %.8lX %.8lX\n", bKey[3], bKey[2], bKey[1], bKey[0]);
|
||||||
|
|
||||||
|
// Extract data, hash and signature from the bytecode.
|
||||||
|
unpackXP(pID, hash, sig, bKey);
|
||||||
|
printProductID(pID);
|
||||||
|
|
||||||
|
printf("PID: %.8lX\nHash: %.8lX\nSignature: %.8lX %.8lX\n", pID[0], hash[0], sig[1], sig[0]);
|
||||||
|
|
||||||
|
// e = Hash
|
||||||
|
// s = Signature
|
||||||
|
BIGNUM *e, *s;
|
||||||
|
|
||||||
|
// Put hash word into BigNum e.
|
||||||
|
e = BN_new();
|
||||||
|
BN_set_word(e, hash[0]);
|
||||||
|
|
||||||
|
// Reverse signature and create a new BigNum s.
|
||||||
|
endiannessConvert((unsigned char *) sig, sizeof(sig));
|
||||||
|
s = BN_bin2bn((unsigned char *)sig, sizeof(sig), nullptr);
|
||||||
|
|
||||||
|
// Create x and y.
|
||||||
|
BIGNUM *x = BN_new();
|
||||||
|
BIGNUM *y = BN_new();
|
||||||
|
|
||||||
|
// Create 2 new points on the existing elliptic curve.
|
||||||
|
EC_POINT *u = EC_POINT_new(eCurve);
|
||||||
|
EC_POINT *v = EC_POINT_new(eCurve);
|
||||||
|
|
||||||
|
// EC_POINT_mul calculates r = generator * n + q * m.
|
||||||
|
// v = s * generator + e * (-publicKey)
|
||||||
|
|
||||||
|
// u = generator * s
|
||||||
|
EC_POINT_mul(eCurve, u, nullptr, generator, s, context);
|
||||||
|
|
||||||
|
// v = publicKey * e
|
||||||
|
EC_POINT_mul(eCurve, v, nullptr, publicKey, e, context);
|
||||||
|
|
||||||
|
// v += u
|
||||||
|
EC_POINT_add(eCurve, v, u, v, context);
|
||||||
|
|
||||||
|
// EC_POINT_get_affine_coordinates() sets x and y, either of which may be NULL, to the corresponding coordinates of p.
|
||||||
|
// x = v.x; y = v.y;
|
||||||
|
EC_POINT_get_affine_coordinates(eCurve, v, x, y, context);
|
||||||
|
|
||||||
|
|
||||||
|
byte buf[FIELD_BYTES], md[SHA_DIGEST_LENGTH], t[4];
|
||||||
|
ul32 h;
|
||||||
|
|
||||||
|
SHA_CTX hContext;
|
||||||
|
|
||||||
|
// h = First32(SHA-1(pID || v.x || v.y)) >> 4
|
||||||
|
SHA1_Init(&hContext);
|
||||||
|
|
||||||
|
// Chop Product ID into 4 bytes.
|
||||||
|
t[0] = pID[0] & 0xff; // First 8 bits
|
||||||
|
t[1] = (pID[0] & 0xff00) >> 8; // Second 8 bits
|
||||||
|
t[2] = (pID[0] & 0xff0000) >> 16; // Third 8 bits
|
||||||
|
t[3] = (pID[0] & 0xff000000) >> 24; // Fourth 8 bits
|
||||||
|
|
||||||
|
// Hash chunk of data.
|
||||||
|
SHA1_Update(&hContext, t, sizeof(t));
|
||||||
|
|
||||||
|
// Empty buffer, place v.x in little-endiannessConvert.
|
||||||
|
memset(buf, 0, sizeof(buf));
|
||||||
|
BN_bn2bin(x, buf);
|
||||||
|
endiannessConvert((unsigned char *) buf, sizeof(buf));
|
||||||
|
|
||||||
|
// Hash chunk of data.
|
||||||
|
SHA1_Update(&hContext, buf, sizeof(buf));
|
||||||
|
|
||||||
|
// Empty buffer, place v.y in little-endiannessConvert.
|
||||||
|
memset(buf, 0, sizeof(buf));
|
||||||
|
BN_bn2bin(y, buf);
|
||||||
|
endiannessConvert((unsigned char *) buf, sizeof(buf));
|
||||||
|
|
||||||
|
// Hash chunk of data.
|
||||||
|
SHA1_Update(&hContext, buf, sizeof(buf));
|
||||||
|
|
||||||
|
// Store the final message from hContext in md.
|
||||||
|
SHA1_Final(md, &hContext);
|
||||||
|
|
||||||
|
// h = First32(SHA-1(pID || v.x || v.y)) >> 4
|
||||||
|
h = (md[0] | (md[1] << 8) | (md[2] << 16) | (md[3] << 24)) >> 4;
|
||||||
|
h &= 0xfffffff;
|
||||||
|
|
||||||
|
printf("Calculated hash: %.8lX\n", h);
|
||||||
|
|
||||||
|
// If we managed to generateXPKey a pKey with the same hash, the pKey is correct.
|
||||||
|
if (h == hash[0]) cprintf("Key valid\n", 0x0A);
|
||||||
|
else cprintf("Key invalid\n", 0x0C);
|
||||||
|
|
||||||
|
putchar('\n');
|
||||||
|
|
||||||
|
BN_free(e);
|
||||||
|
BN_free(s);
|
||||||
|
BN_free(x);
|
||||||
|
BN_free(y);
|
||||||
|
|
||||||
|
BN_CTX_free(context);
|
||||||
|
|
||||||
|
EC_POINT_free(u);
|
||||||
|
EC_POINT_free(v);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Generate a valid Product Key. */
|
||||||
|
void generateXPKey(byte *pKey, EC_GROUP *eCurve, EC_POINT *generator, BIGNUM *order, BIGNUM *privateKey, ul32 *pRaw) {
|
||||||
|
EC_POINT *r = EC_POINT_new(eCurve);
|
||||||
|
BN_CTX *ctx = BN_CTX_new();
|
||||||
|
|
||||||
|
BIGNUM *c = BN_new();
|
||||||
|
BIGNUM *s = BN_new();
|
||||||
|
BIGNUM *x = BN_new();
|
||||||
|
BIGNUM *y = BN_new();
|
||||||
|
|
||||||
|
ul32 bKey[4]{};
|
||||||
|
|
||||||
|
do {
|
||||||
|
memset(bKey, 0, 4);
|
||||||
|
|
||||||
|
// Generate a random number c consisting of 384 bits without any constraints.
|
||||||
|
BN_rand(c, FIELD_BITS, BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY);
|
||||||
|
|
||||||
|
// r = generator * c;
|
||||||
|
EC_POINT_mul(eCurve, r, nullptr, generator, c, ctx);
|
||||||
|
|
||||||
|
// x = r.x; y = r.y;
|
||||||
|
EC_POINT_get_affine_coordinates(eCurve, r, x, y, ctx);
|
||||||
|
|
||||||
|
SHA_CTX hContext;
|
||||||
|
byte md[SHA_DIGEST_LENGTH], buf[FIELD_BYTES], t[4];
|
||||||
|
ul32 hash[1];
|
||||||
|
|
||||||
|
// h = (First-32(SHA1(pRaw, r.x, r.y)) >> 4
|
||||||
|
SHA1_Init(&hContext);
|
||||||
|
|
||||||
|
// Chop Raw Product Key into 4 bytes.
|
||||||
|
t[0] = pRaw[0] & 0xff;
|
||||||
|
t[1] = (pRaw[0] & 0xff00) >> 8;
|
||||||
|
t[2] = (pRaw[0] & 0xff0000) >> 16;
|
||||||
|
t[3] = (pRaw[0] & 0xff000000) >> 24;
|
||||||
|
|
||||||
|
// Hash chunk of data.
|
||||||
|
SHA1_Update(&hContext, t, sizeof(t));
|
||||||
|
|
||||||
|
// Empty buffer, place r.x in little-endiannessConvert.
|
||||||
|
memset(buf, 0, sizeof(buf));
|
||||||
|
BN_bn2bin(x, buf);
|
||||||
|
endiannessConvert((unsigned char *) buf, sizeof(buf));
|
||||||
|
|
||||||
|
// Hash chunk of data.
|
||||||
|
SHA1_Update(&hContext, buf, sizeof(buf));
|
||||||
|
|
||||||
|
// Empty buffer, place r.y in little-endiannessConvert.
|
||||||
|
memset(buf, 0, sizeof(buf));
|
||||||
|
BN_bn2bin(y, buf);
|
||||||
|
endiannessConvert((unsigned char *) buf, sizeof(buf));
|
||||||
|
|
||||||
|
// Hash chunk of data.
|
||||||
|
SHA1_Update(&hContext, buf, sizeof(buf));
|
||||||
|
|
||||||
|
// Store the final message from hContext in md.
|
||||||
|
SHA1_Final(md, &hContext);
|
||||||
|
|
||||||
|
// h = (First-32(SHA1(pRaw, r.x, r.y)) >> 4
|
||||||
|
hash[0] = (md[0] | (md[1] << 8) | (md[2] << 16) | (md[3] << 24)) >> 4;
|
||||||
|
hash[0] &= 0xfffffff;
|
||||||
|
|
||||||
|
/* s = privateKey * hash + c; */
|
||||||
|
// s = privateKey;
|
||||||
|
BN_copy(s, privateKey);
|
||||||
|
|
||||||
|
// s *= hash;
|
||||||
|
BN_mul_word(s, hash[0]);
|
||||||
|
|
||||||
|
// BN_mod_add() adds a to b % m and places the non-negative result in r.
|
||||||
|
// s = |s + c % order|;
|
||||||
|
BN_mod_add(s, s, c, order, ctx);
|
||||||
|
|
||||||
|
// Convert s from BigNum back to bytecode and reverse the endianness.
|
||||||
|
ul32 sig[2]{};
|
||||||
|
|
||||||
|
BN_bn2bin(s, (byte *)sig);
|
||||||
|
endiannessConvert((byte *) sig, BN_num_bytes(s));
|
||||||
|
|
||||||
|
// Pack product key.
|
||||||
|
packXP(bKey, pRaw, hash, sig);
|
||||||
|
|
||||||
|
printf("PID: %.8lX\nHash: %.8lX\nSignature: %.8lX %.8lX\n\n", pRaw[0], hash[0], sig[1], sig[0]);
|
||||||
|
} while (bKey[3] >= 0x40000);
|
||||||
|
// ↑ ↑ ↑
|
||||||
|
// bKey[3] can't be longer than 18 bits, else the signature part will make
|
||||||
|
// the CD-key longer than 25 characters.
|
||||||
|
|
||||||
|
// Convert the key to Base24.
|
||||||
|
base24(pKey, bKey);
|
||||||
|
|
||||||
|
BN_free(c);
|
||||||
|
BN_free(s);
|
||||||
|
BN_free(x);
|
||||||
|
BN_free(y);
|
||||||
|
|
||||||
|
BN_CTX_free(ctx);
|
||||||
|
EC_POINT_free(r);
|
||||||
|
}
|
Loading…
Reference in New Issue