287 lines
8.2 KiB
C++
287 lines
8.2 KiB
C++
//
|
|
// Created by Andrew on 09/04/2023.
|
|
//
|
|
|
|
#include "header.h"
|
|
|
|
const char pSv[] = "C9AE7AED19F6A7E100AADE98134111AD8118E59B8264734327940064BC675A0C682E19C89695FBFA3A4653E47D47FD7592258C7E3C3C61BBEA07FE5A7E842379";
|
|
const long aSv = 1;
|
|
const long bSv = 0;
|
|
|
|
// Base point G (Generator)
|
|
const char genXSv[] = "85ACEC9F9F9B456A78E43C3637DC88D21F977A9EC15E5225BD5060CE5B892F24FEDEE574BF5801F06BC232EEF2161074496613698D88FAC4B397CE3B475406A7";
|
|
const char genYSv[] = "66B7D1983F5D4FE43E8B4F1E28685DE0E22BBE6576A1A6B86C67533BF72FD3D082DBA281A556A16E593DB522942C8DD7120BA50C9413DF944E7258BDDF30B3C4";
|
|
|
|
// Inverse of the public key
|
|
const char pubXSv[] = "90BF6BD980C536A8DB93B52AA9AEBA640BABF1D31BEC7AA345BB7510194A9B07379F552DA7B4A3EF81A9B87E0B85B5118E1E20A098641EE4CCF2045558C98C0E";
|
|
const char pubYSv[] = "6B87D1E658D03868362945CDD582E2CF33EE4BA06369E0EFE9E4851F6DCBEC7F15081E250D171EA0CC4CB06435BCFCFEA8F438C9766743A06CBD06E7EFB4C3AE";
|
|
|
|
// Order of G <- from MSKey 4-in-1
|
|
const char genOrderSv[] = "4CC5C56529F0237D";
|
|
|
|
// Computed private key
|
|
const char privateKeySv[] = "2606120F59C05118";
|
|
|
|
void unpackServer(ul32 *osFamily, ul32 *hash, ul32 *sig, ul32 *prefix, ul32 *raw) {
|
|
osFamily[0] = raw[0] & 0x7ff;
|
|
|
|
hash[0] = ((raw[0] >> 11) | (raw[1] << 21)) & 0x7fffffff;
|
|
|
|
sig[0] = (raw[1] >> 10) | (raw[2] << 22);
|
|
sig[1] = ((raw[2] >> 10) | (raw[3] << 22)) & 0x3fffffff;
|
|
|
|
prefix[0] = (raw[3] >> 8) & 0x3ff;
|
|
}
|
|
|
|
void packServer(ul32 *raw, ul32 *osFamily, ul32 *hash, ul32 *sig, ul32 *prefix) {
|
|
raw[0] = osFamily[0] | (hash[0] << 11);
|
|
raw[1] = (hash[0] >> 21) | (sig[0] << 10);
|
|
raw[2] = (sig[0] >> 22) | (sig[1] << 10);
|
|
raw[3] = (sig[1] >> 22) | (prefix[0] << 8);
|
|
}
|
|
|
|
bool verifyServerKey(EC_GROUP *eCurve, EC_POINT *generator, EC_POINT *public_key, char *cdKey) {
|
|
int i, j, k;
|
|
|
|
BN_CTX *ctx = BN_CTX_new();
|
|
|
|
ul32 bkey[4] = {0};
|
|
ul32 osfamily[1], hash[1], sig[2], prefix[1];
|
|
unbase24(bkey, cdKey);
|
|
printf("%.8x %.8x %.8x %.8x\n", bkey[3], bkey[2], bkey[1], bkey[0]);
|
|
unpackServer(osfamily, hash, sig, prefix, bkey);
|
|
|
|
printf("OS Family: %u\nHash: %.8x\nSig: %.8x %.8x\nPrefix: %.8x\n", osfamily[0], hash[0], sig[1], sig[0], prefix[0]);
|
|
|
|
byte buf[FIELD_BYTES_2003], md[SHA_DIGEST_LENGTH];
|
|
ul32 h1[2];
|
|
SHA_CTX h_ctx;
|
|
|
|
/* h1 = SHA-1(5D || OS Family || Hash || Prefix || 00 00) */
|
|
SHA1_Init(&h_ctx);
|
|
buf[0] = 0x5d;
|
|
buf[1] = osfamily[0] & 0xff;
|
|
buf[2] = (osfamily[0] & 0xff00) >> 8;
|
|
buf[3] = hash[0] & 0xff;
|
|
buf[4] = (hash[0] & 0xff00) >> 8;
|
|
buf[5] = (hash[0] & 0xff0000) >> 16;
|
|
buf[6] = (hash[0] & 0xff000000) >> 24;
|
|
buf[7] = prefix[0] & 0xff;
|
|
buf[8] = (prefix[0] & 0xff00) >> 8;
|
|
buf[9] = buf[10] = 0;
|
|
SHA1_Update(&h_ctx, buf, 11);
|
|
SHA1_Final(md, &h_ctx);
|
|
h1[0] = md[0] | (md[1] << 8) | (md[2] << 16) | (md[3] << 24);
|
|
h1[1] = (md[4] | (md[5] << 8) | (md[6] << 16) | (md[7] << 24)) >> 2;
|
|
h1[1] &= 0x3FFFFFFF;
|
|
printf("h1: %.8x %.8x\n", h1[1], h1[0]);
|
|
|
|
BIGNUM *s, *h, *x, *y;
|
|
x = BN_new();
|
|
y = BN_new();
|
|
endiannessConvert((byte *) sig, 8);
|
|
endiannessConvert((byte *) h1, 8);
|
|
s = BN_bin2bn((byte *)sig, 8, nullptr);
|
|
h = BN_bin2bn((byte *)h1, 8, nullptr);
|
|
|
|
EC_POINT *r = EC_POINT_new(eCurve);
|
|
EC_POINT *t = EC_POINT_new(eCurve);
|
|
/* r = sig*(sig*generator + h1*public_key) */
|
|
EC_POINT_mul(eCurve, t, nullptr, generator, s, ctx);
|
|
EC_POINT_mul(eCurve, r, nullptr, public_key, h, ctx);
|
|
EC_POINT_add(eCurve, r, r, t, ctx);
|
|
EC_POINT_mul(eCurve, r, nullptr, r, s, ctx);
|
|
EC_POINT_get_affine_coordinates_GFp(eCurve, r, x, y, ctx);
|
|
|
|
ul32 h2[1];
|
|
/* h2 = SHA-1(79 || OS Family || r.x || r.y) */
|
|
SHA1_Init(&h_ctx);
|
|
buf[0] = 0x79;
|
|
buf[1] = osfamily[0] & 0xff;
|
|
buf[2] = (osfamily[0] & 0xff00) >> 8;
|
|
SHA1_Update(&h_ctx, buf, 3);
|
|
|
|
memset(buf, 0, FIELD_BYTES_2003);
|
|
BN_bn2bin(x, buf);
|
|
endiannessConvert((byte *) buf, FIELD_BYTES_2003);
|
|
SHA1_Update(&h_ctx, buf, FIELD_BYTES_2003);
|
|
|
|
memset(buf, 0, FIELD_BYTES_2003);
|
|
BN_bn2bin(y, buf);
|
|
endiannessConvert((byte *) buf, FIELD_BYTES_2003);
|
|
SHA1_Update(&h_ctx, buf, FIELD_BYTES_2003);
|
|
|
|
SHA1_Final(md, &h_ctx);
|
|
h2[0] = (md[0] | (md[1] << 8) | (md[2] << 16) | (md[3] << 24)) & 0x7fffffff;
|
|
printf("Calculated hash: %.8x\n", h2[0]);
|
|
|
|
BN_free(s);
|
|
BN_free(h);
|
|
BN_free(x);
|
|
BN_free(y);
|
|
EC_POINT_free(r);
|
|
EC_POINT_free(t);
|
|
BN_CTX_free(ctx);
|
|
|
|
if (h2[0] == hash[0]) return true;
|
|
else return false;
|
|
}
|
|
|
|
void generateServerKey(char *pKey, EC_GROUP *eCurve, EC_POINT *generator, BIGNUM *order, BIGNUM *privateKey, ul32 *osFamily, ul32 *prefix) {
|
|
BN_CTX *ctx = BN_CTX_new();
|
|
|
|
BIGNUM *c = BN_new();
|
|
BIGNUM *s = BN_new();
|
|
BIGNUM *x = BN_new();
|
|
BIGNUM *y = BN_new();
|
|
BIGNUM *b = BN_new();
|
|
EC_POINT *r = EC_POINT_new(eCurve);
|
|
|
|
ul32 bKey[4];
|
|
ul32 h1[2];
|
|
|
|
do {
|
|
ul32 hash = 0, sig[2]{};
|
|
|
|
memset(bKey, 0, 4);
|
|
|
|
// Generate a random number c consisting of 512 bits without any constraints.
|
|
BN_rand(c, FIELD_BITS_2003, BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY);
|
|
|
|
// r = generator * c
|
|
EC_POINT_mul(eCurve, r, nullptr, generator, c, ctx);
|
|
|
|
// x = r.x; y = r.y;
|
|
EC_POINT_get_affine_coordinates(eCurve, r, x, y, ctx);
|
|
|
|
SHA_CTX hContext;
|
|
byte md[SHA_DIGEST_LENGTH]{}, buf[FIELD_BYTES_2003]{};
|
|
|
|
// hash = SHA-1(79 || OS Family || r.x || r.y)
|
|
SHA1_Init(&hContext);
|
|
|
|
buf[0] = 0x79;
|
|
|
|
buf[1] = (*osFamily & 0xff);
|
|
buf[2] = (*osFamily & 0xff00) >> 8;
|
|
|
|
SHA1_Update(&hContext, buf, 3);
|
|
|
|
memset(buf, 0, FIELD_BYTES_2003);
|
|
|
|
BN_bn2bin(x, buf);
|
|
endiannessConvert((byte *) buf, FIELD_BYTES_2003);
|
|
SHA1_Update(&hContext, buf, FIELD_BYTES_2003);
|
|
|
|
memset(buf, 0, FIELD_BYTES_2003);
|
|
|
|
BN_bn2bin(y, buf);
|
|
endiannessConvert((byte *) buf, FIELD_BYTES_2003);
|
|
|
|
SHA1_Update(&hContext, buf, FIELD_BYTES_2003);
|
|
SHA1_Final(md, &hContext);
|
|
|
|
hash = (md[0] | (md[1] << 8) | (md[2] << 16) | (md[3] << 24)) & 0x7fffffff;
|
|
|
|
/* h1 = SHA-1(5D || OS Family || Hash || Prefix || 00 00) */
|
|
SHA1_Init(&hContext);
|
|
buf[0] = 0x5D;
|
|
|
|
buf[1] = (*osFamily & 0xff);
|
|
buf[2] = (*osFamily & 0xff00) >> 8;
|
|
|
|
buf[3] = (hash & 0xff);
|
|
buf[4] = (hash & 0xff00) >> 8;
|
|
buf[5] = (hash & 0xff0000) >> 16;
|
|
buf[6] = (hash & 0xff000000) >> 24;
|
|
|
|
buf[7] = prefix[0] & 0xff;
|
|
buf[8] = (prefix[0] & 0xff00) >> 8;
|
|
|
|
buf[9] = 0x00;
|
|
buf[10] = 0x00;
|
|
SHA1_Update(&hContext, buf, 11);
|
|
SHA1_Final(md, &hContext);
|
|
|
|
h1[0] = md[0] | (md[1] << 8) | (md[2] << 16) | (md[3] << 24);
|
|
h1[1] = (md[4] | (md[5] << 8) | (md[6] << 16) | (md[7] << 24)) >> 2;
|
|
h1[1] &= 0x3FFFFFFF;
|
|
printf("h1: %.8x %.8x\n", h1[1], h1[0]);
|
|
|
|
/* s = ( -h1*privateKey + sqrt( (h1*privateKey)^2 + 4k ) ) / 2 */
|
|
endiannessConvert((byte *) h1, 8);
|
|
BN_bin2bn((byte *)h1, 8, b);
|
|
BN_mod_mul(b, b, privateKey, order, ctx);
|
|
BN_copy(s, b);
|
|
BN_mod_sqr(s, s, order, ctx);
|
|
BN_lshift(c, c, 2);
|
|
BN_add(s, s, c);
|
|
BN_mod_sqrt(s, s, order, ctx);
|
|
BN_mod_sub(s, s, b, order, ctx);
|
|
if (BN_is_odd(s)) {
|
|
BN_add(s, s, order);
|
|
}
|
|
BN_rshift1(s, s);
|
|
sig[0] = sig[1] = 0;
|
|
BN_bn2bin(s, (byte *)sig);
|
|
endiannessConvert((byte *)sig, BN_num_bytes(s));
|
|
packServer(bKey, osFamily, &hash, sig, prefix);
|
|
|
|
printf("OS family: %u\nHash: %.8x\nSig: %.8x %.8x\nPrefix: %.8x\n", *osFamily, hash, sig[1], sig[0], *prefix);
|
|
printf("%.8x %.8x %.8x %.8x\n", bKey[3], bKey[2], bKey[1], bKey[0]);
|
|
} while (bKey[3] >= 0x40000000);
|
|
|
|
base24(pKey, bKey);
|
|
|
|
BN_free(c);
|
|
BN_free(s);
|
|
BN_free(x);
|
|
BN_free(y);
|
|
BN_free(b);
|
|
|
|
BN_CTX_free(ctx);
|
|
EC_POINT_free(r);
|
|
}
|
|
|
|
bool keyServer(char *pKey) {
|
|
|
|
// We cannot produce a valid key without knowing the private key k. The reason for this is that
|
|
// we need the result of the function K(x; y) = kG(x; y).
|
|
BIGNUM *privateKey = BN_new();
|
|
|
|
// We can, however, validate any given key using the available public key: {p, a, b, G, K}.
|
|
// genOrder the order of the generator G, a value we have to reverse -> Schoof's Algorithm.
|
|
BIGNUM *genOrder = BN_new();
|
|
|
|
/* Computed data */
|
|
BN_hex2bn(&genOrder, genOrderSv);
|
|
BN_hex2bn(&privateKey, privateKeySv);
|
|
|
|
EC_POINT *genPoint, *pubPoint;
|
|
EC_GROUP *eCurve = initializeEllipticCurve(
|
|
pSv,
|
|
aSv,
|
|
bSv,
|
|
genXSv,
|
|
genYSv,
|
|
pubXSv,
|
|
pubYSv,
|
|
genOrder,
|
|
privateKey,
|
|
&genPoint,
|
|
&pubPoint
|
|
);
|
|
|
|
ul32 osFamily = 1280, prefix = 0;
|
|
|
|
RAND_bytes((byte *)&prefix, 4);
|
|
|
|
prefix &= 0x3ff;
|
|
|
|
generateServerKey(pKey, eCurve, genPoint, genOrder, privateKey, &osFamily, &prefix);
|
|
|
|
printProductKey(pKey);
|
|
printf("\n\n");
|
|
|
|
return verifyServerKey(eCurve, genPoint, pubPoint, pKey);
|
|
} |