589 lines
19 KiB
C++
589 lines
19 KiB
C++
/*
|
|
Windows XP CD Key Verification/Generator by z22
|
|
Rewritten by Endermanch
|
|
*/
|
|
|
|
#include <cstdio>
|
|
#include <cstring>
|
|
#include <cassert>
|
|
#include <openssl/bn.h>
|
|
#include <openssl/ec.h>
|
|
#include <openssl/sha.h>
|
|
#include <windows.h>
|
|
|
|
#define FIELD_BITS 384
|
|
#define FIELD_BYTES 48
|
|
|
|
HANDLE hConsole;
|
|
unsigned char charset[] = "BCDFGHJKMPQRTVWXY2346789";
|
|
|
|
/* Colored output */
|
|
VOID cprintf(CONST CHAR *Format, INT nColor, ...) {
|
|
va_list vList;
|
|
|
|
va_start(vList, nColor);
|
|
|
|
SetConsoleTextAttribute(hConsole, nColor);
|
|
vprintf(Format, vList);
|
|
SetConsoleTextAttribute(hConsole, 0x0F);
|
|
|
|
va_end(vList);
|
|
|
|
return;
|
|
}
|
|
|
|
/* Unpacks the Product Key. */
|
|
void extract(unsigned long *serial, unsigned long *hash, unsigned long *sig, unsigned long *raw) {
|
|
|
|
// We're assuming that the quantity of information within the product key is at most 114 bits.
|
|
// log2(24^25) = 114.
|
|
|
|
// Serial = Bits [0..30] -> 31 bits
|
|
serial[0] = raw[0] & 0x7fffffff;
|
|
|
|
// Hash (e) = Bits [31..58] -> 28 bits
|
|
hash[0] = ((raw[0] >> 31) | (raw[1] << 1)) & 0xfffffff;
|
|
|
|
// Signature (s) = Bits [59..113] -> 55 bits
|
|
sig[0] = (raw[1] >> 27) | (raw[2] << 5);
|
|
sig[1] = (raw[2] >> 27) | (raw[3] << 5);
|
|
}
|
|
|
|
/* Repacks the Product Key. */
|
|
void pack(unsigned long *raw, unsigned long *serial, unsigned long *hash, unsigned long *sig) {
|
|
raw[0] = serial[0] | ((hash[0] & 1) << 31);
|
|
raw[1] = (hash[0] >> 1) | ((sig[0] & 0x1f) << 27);
|
|
raw[2] = (sig[0] >> 5) | (sig[1] << 27);
|
|
raw[3] = sig[1] >> 5;
|
|
}
|
|
|
|
/* Convert data between endianness types. */
|
|
void endiannessConvert(unsigned char *data, int length) {
|
|
for (int i = 0; i < length / 2; i++) {
|
|
unsigned char temp = data[i];
|
|
data[i] = data[length - i - 1];
|
|
data[length - i - 1] = temp;
|
|
}
|
|
}
|
|
|
|
/* Convert from byte sequence to the CD-key. */
|
|
void base24(unsigned char *cdKey, unsigned long *byteSeq) {
|
|
unsigned char rbs[16];
|
|
BIGNUM *z;
|
|
|
|
// Copy byte sequence to the reversed byte sequence.
|
|
memcpy(rbs, byteSeq, sizeof(rbs));
|
|
|
|
// Skip trailing zeroes and reverse y.
|
|
int length;
|
|
|
|
for (length = 15; rbs[length] == 0; length--);
|
|
endiannessConvert(rbs, ++length);
|
|
|
|
// Convert reversed byte sequence to BigNum z.
|
|
z = BN_bin2bn(rbs, length, nullptr);
|
|
|
|
// Divide z by 24 and convert the remainder to a CD-key char.
|
|
cdKey[25] = 0;
|
|
|
|
for (int i = 24; i >= 0; i--)
|
|
cdKey[i] = charset[BN_div_word(z, 24)];
|
|
|
|
BN_free(z);
|
|
}
|
|
|
|
/* Convert from CD-key to a byte sequence. */
|
|
void unbase24(unsigned long *byteSeq, unsigned char *cdKey) {
|
|
BIGNUM *y = BN_new();
|
|
BN_zero(y);
|
|
|
|
// Empty byte sequence.
|
|
memset(byteSeq, 0, 16);
|
|
|
|
// For each character in product key, place its ASCII-code.
|
|
for (int i = 0; i < 25; i++) {
|
|
BN_mul_word(y, 24);
|
|
BN_add_word(y, cdKey[i]);
|
|
}
|
|
|
|
// Acquire length.
|
|
int n = BN_num_bytes(y);
|
|
|
|
// Place the generated code into the byte sequence.
|
|
BN_bn2bin(y, (unsigned char *)byteSeq);
|
|
BN_free(y);
|
|
|
|
// Reverse the byte sequence.
|
|
endiannessConvert((unsigned char *) byteSeq, n);
|
|
}
|
|
|
|
/* Print Product ID using a Product Key. */
|
|
void printProductID(unsigned long *pKey) {
|
|
char raw[12];
|
|
char b[6], c[8];
|
|
|
|
// Cut away last bit of the product key and convert it to an ASCII-number (=raw)
|
|
sprintf(raw, "%lu", pKey[0] >> 1);
|
|
|
|
// Make B-part {...-640-...} -> most significant 3 digits of Raw Product Key
|
|
strncpy(b, raw, 3);
|
|
b[3] = 0;
|
|
|
|
// Make C-part {...-123456X-...} -> least significant 6 digits of Raw Product Key
|
|
strcpy(c, raw + 3);
|
|
|
|
// Make checksum digit-part {...56X-}
|
|
assert(strlen(c) == 6);
|
|
|
|
int digit = 0;
|
|
|
|
// Reverse sum algorithm to find a check digit that would add to the rest to form a sum divisible by 7.
|
|
for (int i = 0; i < 6; i++)
|
|
digit -= c[i] - '0';
|
|
|
|
while (digit < 0)
|
|
digit += 7;
|
|
|
|
// Append check digit + null terminate.
|
|
c[6] = digit + '0';
|
|
c[7] = 0;
|
|
|
|
printf("Product ID: ");
|
|
cprintf("PPPPP-%s-%s-23XXX\n", 0x0E, b, c);
|
|
}
|
|
|
|
/* Print Product Key. */
|
|
void printProductKey(unsigned char *pKey) {
|
|
assert(strlen((const char *)pKey) == 25);
|
|
|
|
SetConsoleTextAttribute(hConsole, 0x0A);
|
|
|
|
for (int i = 0; i < 25; i++) {
|
|
putchar(pKey[i]);
|
|
if (i != 24 && i % 5 == 4) putchar('-');
|
|
}
|
|
|
|
SetConsoleTextAttribute(hConsole, 0x0F);
|
|
}
|
|
|
|
/* Verify Product Key */
|
|
void verifyKey(EC_GROUP *ec, EC_POINT *generator, EC_POINT *publicKey, char *cdKey) {
|
|
unsigned char key[25];
|
|
|
|
BN_CTX *ctx = BN_CTX_new();
|
|
|
|
// Remove dashes from the CD-key.
|
|
for (int i = 0, k = 0; i < strlen(cdKey) && k < 25; i++) {
|
|
for (int j = 0; j < 24; j++) {
|
|
if (cdKey[i] != '-' && cdKey[i] == charset[j]) {
|
|
key[k++] = j;
|
|
break;
|
|
}
|
|
|
|
// Make sure the CD-key passes the verification procedure.
|
|
assert(j < 24);
|
|
}
|
|
}
|
|
|
|
// Convert Base24 CD-key to bytecode.
|
|
unsigned long bKey[4]{};
|
|
unsigned long pID[1], hash[1], sig[2];
|
|
|
|
unbase24(bKey, key);
|
|
|
|
// Output CD-key bytecode.
|
|
printf("Bytecode: %.8lX %.8lX %.8lX %.8lX\n", bKey[3], bKey[2], bKey[1], bKey[0]);
|
|
|
|
// Extract pid_data, hash and signature from the bytecode.
|
|
extract(pID, hash, sig, bKey);
|
|
printProductID(pID);
|
|
|
|
printf("PID: %.8lX\nHash: %.8lX\nSignature: %.8lX %.8lX\n", pID[0], hash[0], sig[1], sig[0]);
|
|
|
|
// e = Hash
|
|
// s = Signature
|
|
BIGNUM *e, *s;
|
|
|
|
// Put hash word into BigNum e.
|
|
e = BN_new();
|
|
BN_set_word(e, hash[0]);
|
|
|
|
// Reverse signature and create a new BigNum s.
|
|
endiannessConvert((unsigned char *) sig, sizeof(sig));
|
|
s = BN_bin2bn((unsigned char *)sig, sizeof(sig), nullptr);
|
|
|
|
// Create x and y.
|
|
BIGNUM *x = BN_new();
|
|
BIGNUM *y = BN_new();
|
|
|
|
// Create 2 new points on the existing elliptic curve.
|
|
EC_POINT *u = EC_POINT_new(ec);
|
|
EC_POINT *v = EC_POINT_new(ec);
|
|
|
|
|
|
// EC_POINT_mul calculates r = generator * n + q * m.
|
|
// v = s * generator + e * (-publicKey)
|
|
|
|
// u = generator * s
|
|
EC_POINT_mul(ec, u, nullptr, generator, s, ctx);
|
|
|
|
// v = publicKey * e
|
|
EC_POINT_mul(ec, v, nullptr, publicKey, e, ctx);
|
|
|
|
// v += u
|
|
EC_POINT_add(ec, v, u, v, ctx);
|
|
|
|
// EC_POINT_get_affine_coordinates() sets x and y, either of which may be NULL, to the corresponding coordinates of p.
|
|
// x = v.x; y = v.y;
|
|
EC_POINT_get_affine_coordinates(ec, v, x, y, ctx);
|
|
|
|
|
|
unsigned char buf[FIELD_BYTES], md[SHA_DIGEST_LENGTH], t[4];
|
|
unsigned long h;
|
|
|
|
SHA_CTX hContext;
|
|
|
|
/* h = (first 32 bits of SHA1(pID || v.x, v.y)) >> 4 */
|
|
SHA1_Init(&hContext);
|
|
|
|
// Chop Product ID into 4 bytes.
|
|
t[0] = pID[0] & 0xff; // First 8 bits
|
|
t[1] = (pID[0] & 0xff00) >> 8; // Second 8 bits
|
|
t[2] = (pID[0] & 0xff0000) >> 16; // Third 8 bits
|
|
t[3] = (pID[0] & 0xff000000) >> 24; // Fourth 8 bits
|
|
|
|
// Hash chunk of data.
|
|
SHA1_Update(&hContext, t, sizeof(t));
|
|
|
|
// Empty buffer, place v.x in little-endian.
|
|
memset(buf, 0, sizeof(buf));
|
|
BN_bn2bin(x, buf);
|
|
endiannessConvert((unsigned char *) buf, sizeof(buf));
|
|
|
|
// Hash chunk of data.
|
|
SHA1_Update(&hContext, buf, sizeof(buf));
|
|
|
|
// Empty buffer, place v.y in little-endian.
|
|
memset(buf, 0, sizeof(buf));
|
|
BN_bn2bin(y, buf);
|
|
endiannessConvert((unsigned char *) buf, sizeof(buf));
|
|
|
|
// Hash chunk of data.
|
|
SHA1_Update(&hContext, buf, sizeof(buf));
|
|
|
|
// Store the final message from hContext in md.
|
|
SHA1_Final(md, &hContext);
|
|
|
|
// h = (first 32 bits of SHA1(pID || v.x, v.y)) >> 4
|
|
h = (md[0] | (md[1] << 8) | (md[2] << 16) | (md[3] << 24)) >> 4;
|
|
h &= 0xfffffff;
|
|
|
|
printf("Calculated hash: %.8lX\n", h);
|
|
|
|
// If we managed to generateKey a key with the same hash, the key is correct.
|
|
if (h == hash[0]) cprintf("Key valid\n", 0x0A);
|
|
else cprintf("Key invalid\n", 0x0C);
|
|
|
|
putchar('\n');
|
|
|
|
BN_free(e);
|
|
BN_free(s);
|
|
BN_free(x);
|
|
BN_free(y);
|
|
|
|
BN_CTX_free(ctx);
|
|
|
|
EC_POINT_free(u);
|
|
EC_POINT_free(v);
|
|
}
|
|
|
|
/* Generate a valid Product Key. */
|
|
void generateKey(unsigned char *pKey, EC_GROUP *eCurve, EC_POINT *generator, BIGNUM *order, BIGNUM *privateKey, unsigned long *pRaw) {
|
|
EC_POINT *r = EC_POINT_new(eCurve);
|
|
BN_CTX *ctx = BN_CTX_new();
|
|
|
|
BIGNUM *c = BN_new();
|
|
BIGNUM *s = BN_new();
|
|
BIGNUM *x = BN_new();
|
|
BIGNUM *y = BN_new();
|
|
|
|
unsigned long bKey[4];
|
|
|
|
do {
|
|
// Generate a random number c consisting of 384 bits without any constraints.
|
|
BN_rand(c, FIELD_BITS, BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY);
|
|
|
|
// r = generator * c;
|
|
EC_POINT_mul(eCurve, r, NULL, generator, c, ctx);
|
|
|
|
// x = r.x; y = r.y;
|
|
EC_POINT_get_affine_coordinates(eCurve, r, x, y, ctx);
|
|
|
|
SHA_CTX hContext;
|
|
unsigned char md[SHA_DIGEST_LENGTH], buf[FIELD_BYTES], t[4];
|
|
unsigned long hash[1];
|
|
|
|
/* h = (fist 32 bits of SHA1(pRaw || r.x, r.y)) >> 4 */
|
|
SHA1_Init(&hContext);
|
|
|
|
// Chop Raw Product Key into 4 bytes.
|
|
t[0] = pRaw[0] & 0xff;
|
|
t[1] = (pRaw[0] & 0xff00) >> 8;
|
|
t[2] = (pRaw[0] & 0xff0000) >> 16;
|
|
t[3] = (pRaw[0] & 0xff000000) >> 24;
|
|
|
|
// Hash chunk of data.
|
|
SHA1_Update(&hContext, t, sizeof(t));
|
|
|
|
// Empty buffer, place r.x in little-endian.
|
|
memset(buf, 0, sizeof(buf));
|
|
BN_bn2bin(x, buf);
|
|
endiannessConvert((unsigned char *) buf, sizeof(buf));
|
|
|
|
// Hash chunk of data.
|
|
SHA1_Update(&hContext, buf, sizeof(buf));
|
|
|
|
// Empty buffer, place r.y in little-endian.
|
|
memset(buf, 0, sizeof(buf));
|
|
BN_bn2bin(y, buf);
|
|
endiannessConvert((unsigned char *) buf, sizeof(buf));
|
|
|
|
// Hash chunk of data.
|
|
SHA1_Update(&hContext, buf, sizeof(buf));
|
|
|
|
// Store the final message from hContext in md.
|
|
SHA1_Final(md, &hContext);
|
|
|
|
// h = (First-32(SHA1(pRaw, r.x, r.y)) >> 4
|
|
hash[0] = (md[0] | (md[1] << 8) | (md[2] << 16) | (md[3] << 24)) >> 4;
|
|
hash[0] &= 0xfffffff;
|
|
|
|
/* s = privateKey * hash + c; */
|
|
// s = privateKey;
|
|
BN_copy(s, privateKey);
|
|
|
|
// s *= hash;
|
|
BN_mul_word(s, hash[0]);
|
|
|
|
// BN_mod_add() adds a to b % m and places the non-negative result in r.
|
|
// s = |s + c % order|;
|
|
BN_mod_add(s, s, c, order, ctx);
|
|
|
|
// Convert s from BigNum back to bytecode and reverse the endianness.
|
|
unsigned long sig[2]{};
|
|
|
|
BN_bn2bin(s, (unsigned char *)sig);
|
|
endiannessConvert((unsigned char *) sig, BN_num_bytes(s));
|
|
|
|
// Pack product key.
|
|
pack(bKey, pRaw, hash, sig);
|
|
|
|
printf("PID: %.8lX\nHash: %.8lX\nSignature: %.8lX %.8lX\n\n", pRaw[0], hash[0], sig[1], sig[0]);
|
|
} while (bKey[3] >= 0x62A32); // Loop in case signature part will make the CD-key longer than 25 characters.
|
|
|
|
// Convert the key to Base24.
|
|
base24(pKey, bKey);
|
|
|
|
BN_free(c);
|
|
BN_free(s);
|
|
BN_free(x);
|
|
BN_free(y);
|
|
|
|
BN_CTX_free(ctx);
|
|
EC_POINT_free(r);
|
|
}
|
|
|
|
|
|
/*
|
|
* PK: VX8CG-8KC6V-PVPMD-GKPPH-GC7W8
|
|
*
|
|
* The Windows XP product key is composed of 25 characters. The dashes store no information.
|
|
* The product key is encoded in Base24 with an alphabet of "BCDFGHJKMPQRTVWXY2346789" in order
|
|
* to avoid ambiguous characters (e.g. "I" and "1", "0" and "O").
|
|
*
|
|
* To convert a 25-digit key to binary data, we need to:
|
|
* 1. Think of the key as of an array of bytes. Then convert the concatenated key VX8CG8KC6VPVPMDGKPPHGC7W8
|
|
* into its Base24 representation ('B' = 0, 'C' = 1, 'D' = 2, ...) -> [ 13, 15, 22, 1, 4, ... ].
|
|
* 2. Compute the decoded array in little-endian.
|
|
* 3. The decoded result is divided into sections:
|
|
* - 12 bits -> OS Family
|
|
* - 31 bits -> Hash
|
|
* - 62 bits -> Signature
|
|
* - 9 bits -> Prefix
|
|
*
|
|
* Product ID: AAAAA-BBB-CCCCCCC-DDEEE
|
|
*
|
|
* digits | length | encoding
|
|
* --------+---------+---------------------------------------
|
|
* AAAAA | 17 bits | bit 0 to bit 16 of P1
|
|
* BBB | 10 bits | bit 17 to bit 26 of P1
|
|
* CCCCCCC | 28 bits | bit 27 to bit 31 of P1 (lower 5 bits)
|
|
* | | bit 0 to bit 22 of P2 (upper 23 bits)
|
|
* DDEEE | 17 bits | bit 23 to bit 31 of P2 (lower 9 bits)
|
|
* | | bit 0 to bit 7 of P3 (upper 8 bits)
|
|
*
|
|
* digits | meaning
|
|
* --------+-------------------------------------------------
|
|
* AAAAA | apparently always 55034 (in Windows XP RC1)
|
|
* BBB | most significant three digits of Raw Product Key
|
|
* | (see below)
|
|
* CCCCCCC | least significant six digits of Raw Product Key
|
|
* | plus check digit (see below)
|
|
* DD | index of the public key used to verify the
|
|
* | Product Key. Example: 22 for PRO version and 23 for VLK version
|
|
* EEE | random value (used for phone activation, different installation IDs are generated)
|
|
*/
|
|
|
|
|
|
int main() {
|
|
hConsole = GetStdHandle(STD_OUTPUT_HANDLE);
|
|
|
|
// Initialize BIGNUM and BIGNUMCTX structures.
|
|
// BIGNUM - Large numbers
|
|
// BIGNUMCTX - Context large numbers (temporary)
|
|
BIGNUM *a, *b, *p, *generatorX, *generatorY, *publicKeyX, *publicKeyY, *genOrder, *privateKey;
|
|
BN_CTX *context;
|
|
|
|
// Microsoft Product Key identification program uses a public key stored in pidgen.dll's BINK resource,
|
|
// which is an Elliptic Curve Cryptography (ECC) public key. It can be decomposed into a following mathematical task:
|
|
|
|
// We're presented with an elliptic curve, a multivariable function y(x; p; a; b), where
|
|
// y^2 % p = x^3 + ax + b % p.
|
|
a = BN_new();
|
|
b = BN_new();
|
|
p = BN_new();
|
|
|
|
// Public key will consist of the resulting (x; y) values.
|
|
publicKeyX = BN_new();
|
|
publicKeyY = BN_new();
|
|
|
|
// G(x; y) is a generator function, its return value represents a point on the elliptic curve.
|
|
generatorX = BN_new();
|
|
generatorY = BN_new();
|
|
|
|
// We cannot produce a valid key without knowing the private key k. The reason for this is that
|
|
// we need the result of the function K(x; y) = kG(x; y).
|
|
privateKey = BN_new();
|
|
|
|
// We can, however, validate any given key using the available public key: {p, a, b, G, K}.
|
|
// genOrder the order of the generator G, a value we have to reverse -> Schoof's Algorithm.
|
|
genOrder = BN_new();
|
|
|
|
// Context variable
|
|
context = BN_CTX_new();
|
|
|
|
|
|
/* Public data */
|
|
// Data taken from pidgen.dll BINK-resources
|
|
BN_hex2bn(&p, "92ddcf14cb9e71f4489a2e9ba350ae29454d98cb93bdbcc07d62b502ea12238ee904a8b20d017197aae0c103b32713a9");
|
|
|
|
BN_set_word(a, 1);
|
|
BN_set_word(b, 0);
|
|
|
|
// Base point G (Generator)
|
|
BN_hex2bn(&generatorX, "46E3775ECE21B0898D39BEA57050D422A0AF989E497962BAEE2CB17E0A28D5360D5476B8DC966443E37A14F1AEF37742");
|
|
BN_hex2bn(&generatorY, "7C8E741D2C34F4478E325469CD491603D807222C9C4AC09DDB2B31B3CE3F7CC191B3580079932BC6BEF70BE27604F65E");
|
|
|
|
// Inverse of the public key
|
|
BN_hex2bn(&publicKeyX, "5D8DBE75198015EC41C45AAB6143542EB098F6A5CC9CE4178A1B8A1E7ABBB5BC64DF64FAF6177DC1B0988AB00BA94BF8");
|
|
BN_hex2bn(&publicKeyY, "23A2909A0B4803C89F910C7191758B48746CEA4D5FF07667444ACDB9512080DBCA55E6EBF30433672B894F44ACE92BFA");
|
|
|
|
|
|
/* Computed data */
|
|
// The order of G was computed in 18 hours using a Pentium III 450
|
|
BN_hex2bn(&genOrder, "DB6B4C58EFBAFD");
|
|
|
|
// The private key was computed in 10 hours using a Pentium III 450
|
|
BN_hex2bn(&privateKey, "565B0DFF8496C8");
|
|
|
|
|
|
/* Elliptical Curve calculations. */
|
|
// The group is defined via Fp = all integers [0; p - 1], where p is prime.
|
|
// The function EC_POINT_set_affine_coordinates() sets the x and y coordinates for the point p defined over the curve given in group.
|
|
EC_GROUP *eCurve = EC_GROUP_new_curve_GFp(p, a, b, context);
|
|
|
|
// Create new point for the generator on the elliptic curve and set its coordinates to (genX; genY).
|
|
EC_POINT *genPoint = EC_POINT_new(eCurve);
|
|
EC_POINT_set_affine_coordinates(eCurve, genPoint, generatorX, generatorY, context);
|
|
|
|
// Create new point for the public key on the elliptic curve and set its coordinates to (pubX; pubY).
|
|
EC_POINT *pub = EC_POINT_new(eCurve);
|
|
EC_POINT_set_affine_coordinates(eCurve, pub, publicKeyX, publicKeyY, context);
|
|
|
|
|
|
/* Generate a key. */
|
|
unsigned char pKey[26]{};
|
|
unsigned long pRaw[1]{};
|
|
|
|
/*
|
|
* Decoding the Product Key results in an example byte sequence.
|
|
*
|
|
* 0x6F 0xFA 0x95 0x45 0xFC 0x75 0xB5 0x52 0xBB 0xEF 0xB1 0x17 0xDA 0xCD 0x00
|
|
*
|
|
* Of these 15 bytes the least significant four bytes contain the Raw
|
|
* Product Key in little endian byte order. The least significant bit is
|
|
* removed by shifting this 32-bit value (0x4595FA6F - remember the
|
|
* little endian byte order) to the left by one bit position, resulting
|
|
* in a Raw Product Key of 0x22CAFD37, or
|
|
*
|
|
* 583728439
|
|
*
|
|
* in decimal notation.
|
|
*/
|
|
|
|
SetConsoleTitleA("Windows XP VLK Keygen");
|
|
|
|
system("cls");
|
|
cprintf("Windows XP VLK Keygen\n\n", 0x08);
|
|
|
|
cprintf("Principle of Operation:\n", 0x0C);
|
|
printf("We need a valid Raw Product Key to generate the Product ID in form of AAAAA-BBB-CCCCCCS-DDEEE.\n\n");
|
|
printf("AAAAA is the Windows XP Series constant - different for each version.\n");
|
|
printf("Raw Product Key directly represents the BBB-CCCCCC part of the Product ID.\n");
|
|
printf("S is a \"check bit\": it's picked so that the sum of all C digits with it added makes a number divisble by 7.\n");
|
|
printf("DD is the index of the public key used to verify the Product Key.\n");
|
|
printf("EEE is a random number used to generate a different Installation ID each time.\n\n");
|
|
|
|
printf("The Product Key itself can at most contain 114 bits of information, as per the alphabet capacity formula.\n");
|
|
printf("Based on that, we unpack the 114-bit Raw Product Key into 3 ordered segments:\n");
|
|
printf("\tData (31 bits), Hash (28 bits) and Signature (55 bits).\n\n");
|
|
printf("Microsoft uses a really elegant Elliptic Curve Algorithm to validate the product keys.\n");
|
|
printf("It is a public-key cryptographic system, thus Microsoft had to share the public key,\nand it's, in fact, stored within pidgen.dll.\n");
|
|
printf("To crack the CD-key generation algorithm we must find the corresponding private key from the public key,\nwhich was conveniently computed before us.\n");
|
|
printf("In general, there are 2 special cases for the Elliptic Curve leveraged in cryptography - F2m and Fp.\nMicrosoft used the latter.\n");
|
|
printf("\ty^2 = x^3 + ax + b %% p.\n");
|
|
printf("The task boils down to generating a valid Hash/Signature pair for the Raw Key we provided:\n");
|
|
printf("\t1. We need to generate a random 384-bit number r, and define C = R(r.x, r.y) = rG.\n");
|
|
printf("\t2. Hash = (First32Bits(SHA1(pRaw, r.x, r.y)) >> 4.\n");
|
|
printf("\t3. Signature = privateKey * Hash + (C %% Order)\n");
|
|
printf("Finally, we pack these components together, convert them to Base24 and get a valid Windows XP key.\n");
|
|
|
|
cprintf("Input Raw Product Key BBB-CCCCCC WITHOUT DASHES in range [100-000000; 999-999999]: ", 0x0E);
|
|
scanf_s("%lu", pRaw);
|
|
|
|
printf("\n");
|
|
|
|
pRaw[0] <<= 1;
|
|
|
|
|
|
for (int i = 0; i < 10; i++) {
|
|
cprintf("Product Key %d:\n", 0x08, i + 1);
|
|
|
|
generateKey(pKey, eCurve, genPoint, genOrder, privateKey, pRaw);
|
|
printProductKey(pKey);
|
|
|
|
printf("\n\n");
|
|
|
|
// Verify the key
|
|
verifyKey(eCurve, genPoint, pub, (char *) pKey);
|
|
}
|
|
|
|
|
|
// Cleanup
|
|
BN_CTX_free(context);
|
|
|
|
system("pause");
|
|
|
|
return 0;
|
|
}
|