XPKeygen/server.cpp

449 lines
15 KiB
C++

//
// Created by Andrew on 09/04/2023.
//
#include "header.h"
/* Windows Server 2003 */
const char pSv[] = "C9AE7AED19F6A7E100AADE98134111AD8118E59B8264734327940064BC675A0C682E19C89695FBFA3A4653E47D47FD7592258C7E3C3C61BBEA07FE5A7E842379";
const long aSv = 1;
const long bSv = 0;
// Base point G (Generator)
const char genXSv[] = "85ACEC9F9F9B456A78E43C3637DC88D21F977A9EC15E5225BD5060CE5B892F24FEDEE574BF5801F06BC232EEF2161074496613698D88FAC4B397CE3B475406A7";
const char genYSv[] = "66B7D1983F5D4FE43E8B4F1E28685DE0E22BBE6576A1A6B86C67533BF72FD3D082DBA281A556A16E593DB522942C8DD7120BA50C9413DF944E7258BDDF30B3C4";
// Inverse of the public key
const char pubXSv[] = "90BF6BD980C536A8DB93B52AA9AEBA640BABF1D31BEC7AA345BB7510194A9B07379F552DA7B4A3EF81A9B87E0B85B5118E1E20A098641EE4CCF2045558C98C0E";
const char pubYSv[] = "6B87D1E658D03868362945CDD582E2CF33EE4BA06369E0EFE9E4851F6DCBEC7F15081E250D171EA0CC4CB06435BCFCFEA8F438C9766743A06CBD06E7EFB4C3AE";
// Order of G <- from MSKey 4-in-1
const char genOrderSv[] = "4CC5C56529F0237D";
// Computed private key
const char privateKeySv[] = "2606120F59C05118";
/* Windows XP x64
Public key (-K) = (1989960177638374390878377737764297057685259206834686428253479199374616869742150776410973898745805799780071536831208959469038333664656928533078897351495263; 2680493145252003995204016438404731303203625133293449171132691660710342616258476835192643732221910418645447349019141673820306444587247165566828458285756618)
Order of base point G (n) = 4710798293276956193
Private key (k) = 4699066967014190092 for INVERSE. 11731326262766101
const char pSv[] = "D4B49D04A01EF209121C370DCF0D6292569EC65B8F147A8C62319B6B90DEA2D1CD45199B93582732BFEE27F40BF62D7EB2559BCD08041E301E0D14037A25D989";
const long aSv = 1;
const long bSv = 0;
const char genXSv[] = "828A23E65A03F2CE12342DC2B3AA4089C1447DD5C4DC36C0470885A4662F10187037F72B2216C3F671B434267A329BD3363BB27055F0EBBA8A0ABEF451D3F6A3";
const char genYSv[] = "23B0823295C9CB669E1643B298624083F68C58F14FEEC55D0B247EF37B353A1066F502D7BC71050056C7D006156A26CC9222F5135FB8B255D7773AE0CDCA31E2";
const char pubXSv[] = "25FEB90513F63C0833F1096369149E65C9359F4BCC8DE9A8F647030F96485BC71929594FF369DB967910B8F0A59BC7C30CF0D38311486293BA0B2952EE648E5F";
const char pubYSv[] = "A186A2C2913E5584F05E97D3CD49E354E6C41BE329877D7FCC7B2BF877A0B00C9298901D305D7FF012FF7902B4202D4ED64D6A90C6AD05960253BAB8F69D68BF";
// Order of G <- CALCULATED ON MY i7-12700K in 20 seconds
const char genOrderSv[] = "41601E16BF4A1621";
// Computed private key <- CALCULATED ON MY i7-12700K in 5 minutes 40 seconds
const char privateKeySv[] = "4136708280A72C0C";*/
/* Windows XP x64 OEM
const char pSv[] = "A6FEDE9568C7863685F783F864A5943D34DED45EC460EEB2EC0455B01BC3C4D21FE081E479F2338BAAF7B10903AC89D23774938F41FDBFB6F16A615ECE5A04A1";
const long aSv = 1;
const long bSv = 0;
const char genXSv[] = "3CCFE20244697894A5CF8F8A57F335462C8C7C4935E171A373C2C1BA85C304D121A48931A99E4DD911945B410E10DEF21C00B2ED33FEF4E8F6FCBE16014E0AA8";
const char genYSv[] = "7D3F4583D6A45EF6547532B2AE6AC83281317A212223A47ADA92FB48DF055A225DD3E8DF17850EBFAD744780C8166B14F0A39C96B3D216E2247A89518985F6F8";
const char pubXSv[] = "19D3C8A75DACEAB3CE42970BCF3097F712FD3F6D3B171BE55D7AEF6210C48194480E998AFAC181935DCB9E66BD23769AF5E7ABB8ED2A7E5FAABD4FD1F8D24F7C";
const char pubYSv[] = "47A138CDB3C51BEB5443A00FD24734C6DE5DCE6DBA3B2EC337984C09B1CB108E45E8B50F78AEE5FBCA068C0B285576AC26099BD4D52AE2AF9F32A30A340705AF";
// Order of G <- CALCULATED ON MY i7-12700K in 2 hours (single threaded).
const char genOrderSv[] = "4782F84242B0A5E1";
// Computed private key <- CALCULATED ON MY i7-12700K in 5 minutes 40 seconds
const char privateKeySv[] = "15F9B7336005CB82";// or "3189410EE2AADA5F";
*/
/* Unpacks the Windows Server 2003-like Product Key. */
VOID unpackServer(
QWORD (&pRaw)[2],
BOOL &pUpgrade,
DWORD &pChannelID,
DWORD &pHash,
QWORD &pSignature,
DWORD &pAuthInfo
) {
// We're assuming that the quantity of information within the product key is at most 114 bits.
// log2(24^25) = 114.
// Upgrade = Bit 0
pUpgrade = FIRSTNBITS(pRaw[0], 1);
// Channel ID = Bits [1..10] -> 10 bits
pChannelID = NEXTSNBITS(pRaw[0], 10, 1);
// Hash = Bits [11..41] -> 31 bits
pHash = NEXTSNBITS(pRaw[0], 31, 11);
// Signature = Bits [42..103] -> 62 bits
// The quad-word signature overlaps AuthInfo in bits 104 and 105,
// hence Microsoft employs a secret technique called: Signature = HIDWORD(Signature) >> 2 | LODWORD(Signature)
pSignature = NEXTSNBITS(pRaw[1], 30, 10) << 32 | FIRSTNBITS(pRaw[1], 10) << 22 | NEXTSNBITS(pRaw[0], 22, 42);
// AuthInfo = Bits [104..113] -> 10 bits
pAuthInfo = NEXTSNBITS(pRaw[1], 10, 40);
}
/* Packs the Windows Server 2003-like Product Key. */
VOID packServer(
QWORD (&pRaw)[2],
BOOL pUpgrade,
DWORD pChannelID,
DWORD pHash,
QWORD pSignature,
DWORD pAuthInfo
) {
// AuthInfo [113..104] <- Signature [103..42] <- Hash [41..11] <- Channel ID [10..1] <- Upgrade [0]
pRaw[0] = FIRSTNBITS(pSignature, 22) << 42 | (QWORD)pHash << 11 | (QWORD)pChannelID << 1 | pUpgrade;
pRaw[1] = FIRSTNBITS(pAuthInfo, 10) << 40 | NEXTSNBITS(pSignature, 40, 22);
}
/* Verifies the Windows Server 2003-like Product Key. */
BOOL verifyServerKey(
EC_GROUP *eCurve,
EC_POINT *basePoint,
EC_POINT *publicKey,
CHAR (&pKey)[PK_LENGTH + NULL_TERMINATOR]
) {
BN_CTX *context = BN_CTX_new();
QWORD bKey[2]{},
pSignature = 0;
DWORD pData,
pChannelID,
pHash,
pAuthInfo;
BOOL pUpgrade;
// Convert Base24 CD-key to bytecode.
unbase24((BYTE *)bKey, pKey);
// Extract product key segments from bytecode.
unpackServer(bKey, pUpgrade, pChannelID, pHash, pSignature, pAuthInfo);
pData = pChannelID << 1 | pUpgrade;
BYTE msgDigest[SHA_DIGEST_LENGTH]{},
msgBuffer[SHA_MSG_LENGTH_2003]{},
xBin[FIELD_BYTES_2003]{},
yBin[FIELD_BYTES_2003]{};
// Assemble the first SHA message.
msgBuffer[0x00] = 0x5D;
msgBuffer[0x01] = (pData & 0x00FF);
msgBuffer[0x02] = (pData & 0xFF00) >> 8;
msgBuffer[0x03] = (pHash & 0x000000FF);
msgBuffer[0x04] = (pHash & 0x0000FF00) >> 8;
msgBuffer[0x05] = (pHash & 0x00FF0000) >> 16;
msgBuffer[0x06] = (pHash & 0xFF000000) >> 24;
msgBuffer[0x07] = (pAuthInfo & 0x00FF);
msgBuffer[0x08] = (pAuthInfo & 0xFF00) >> 8;
msgBuffer[0x09] = 0x00;
msgBuffer[0x0A] = 0x00;
// newSignature = SHA1(5D || Channel ID || Hash || AuthInfo || 00 00)
SHA1(msgBuffer, 11, msgDigest);
// Translate the byte digest into a 64-bit integer - this is our computed intermediate signature.
// As the signature is only 62 bits long at most, we have to truncate it by shifting the high DWORD right 2 bits (per spec).
QWORD iSignature = NEXTSNBITS(BYDWORD(&msgDigest[4]), 30, 2) << 32 | BYDWORD(msgDigest);
/*
*
* Scalars:
* e = Hash
* s = Schnorr Signature
*
* Points:
* G(x, y) = Generator (Base Point)
* K(x, y) = Public Key
*
* Equation:
* P = s(sG + eK)
*
*/
BIGNUM *e = BN_lebin2bn((BYTE *)&iSignature, sizeof(iSignature), nullptr),
*s = BN_lebin2bn((BYTE *)&pSignature, sizeof(pSignature), nullptr),
*x = BN_new(),
*y = BN_new();
// Create 2 points on the elliptic curve.
EC_POINT *p = EC_POINT_new(eCurve);
EC_POINT *t = EC_POINT_new(eCurve);
// t = sG
EC_POINT_mul(eCurve, t, nullptr, basePoint, s, context);
// p = eK
EC_POINT_mul(eCurve, p, nullptr, publicKey, e, context);
// p += t
EC_POINT_add(eCurve, p, t, p, context);
// p *= s
EC_POINT_mul(eCurve, p, nullptr, p, s, context);
// x = p.x; y = p.y;
EC_POINT_get_affine_coordinates(eCurve, p, x, y, context);
// Convert resulting point coordinates to bytes.
BN_bn2lebin(x, xBin, FIELD_BYTES_2003);
BN_bn2lebin(y, yBin, FIELD_BYTES_2003);
// Assemble the second SHA message.
msgBuffer[0x00] = 0x79;
msgBuffer[0x01] = (pData & 0x00FF);
msgBuffer[0x02] = (pData & 0xFF00) >> 8;
memcpy((void *)&msgBuffer[3], (void *)xBin, FIELD_BYTES_2003);
memcpy((void *)&msgBuffer[3 + FIELD_BYTES_2003], (void *)yBin, FIELD_BYTES_2003);
// compHash = SHA1(79 || Channel ID || p.x || p.y)
SHA1(msgBuffer, SHA_MSG_LENGTH_2003, msgDigest);
// Translate the byte digest into a 32-bit integer - this is our computed hash.
// Truncate the hash to 31 bits.
DWORD compHash = BYDWORD(msgDigest) & BITMASK(31);
BN_free(s);
BN_free(e);
BN_free(x);
BN_free(y);
BN_CTX_free(context);
EC_POINT_free(p);
EC_POINT_free(t);
// If the computed hash checks out, the key is valid.
return compHash == pHash;
}
/* Generates the Windows Server 2003-like Product Key. */
VOID generateServerKey(
EC_GROUP *eCurve,
EC_POINT *basePoint,
BIGNUM *genOrder,
BIGNUM *privateKey,
DWORD pChannelID,
DWORD pAuthInfo,
BOOL pUpgrade,
CHAR (&pKey)[PK_LENGTH + NULL_TERMINATOR]
) {
BN_CTX *numContext = BN_CTX_new();
BIGNUM *c = BN_new(),
*e = BN_new(),
*s = BN_new(),
*x = BN_new(),
*y = BN_new();
QWORD pRaw[2]{},
pSignature = 0;
// Data segment of the RPK.
DWORD pData = pChannelID << 1 | pUpgrade;
BOOL noSquare;
do {
EC_POINT *r = EC_POINT_new(eCurve);
// Generate a random number c consisting of 512 bits without any constraints.
BN_rand(c, FIELD_BITS_2003, BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY);
// R = cG
EC_POINT_mul(eCurve, r, nullptr, basePoint, c, numContext);
// Acquire its coordinates.
// x = R.x; y = R.y;
EC_POINT_get_affine_coordinates(eCurve, r, x, y, numContext);
BYTE msgDigest[SHA_DIGEST_LENGTH]{},
msgBuffer[SHA_MSG_LENGTH_2003]{},
xBin[FIELD_BYTES_2003]{},
yBin[FIELD_BYTES_2003]{};
// Convert resulting point coordinates to bytes.
BN_bn2lebin(x, xBin, FIELD_BYTES_2003);
BN_bn2lebin(y, yBin, FIELD_BYTES_2003);
// Assemble the first SHA message.
msgBuffer[0x00] = 0x79;
msgBuffer[0x01] = (pData & 0x00FF);
msgBuffer[0x02] = (pData & 0xFF00) >> 8;
memcpy((void *)&msgBuffer[3], (void *)xBin, FIELD_BYTES_2003);
memcpy((void *)&msgBuffer[3 + FIELD_BYTES_2003], (void *)yBin, FIELD_BYTES_2003);
// pHash = SHA1(79 || Channel ID || R.x || R.y)
SHA1(msgBuffer, SHA_MSG_LENGTH_2003, msgDigest);
// Translate the byte digest into a 32-bit integer - this is our computed hash.
// Truncate the hash to 31 bits.
DWORD pHash = BYDWORD(msgDigest) & BITMASK(31);
// Assemble the second SHA message.
msgBuffer[0x00] = 0x5D;
msgBuffer[0x01] = (pData & 0x00FF);
msgBuffer[0x02] = (pData & 0xFF00) >> 8;
msgBuffer[0x03] = (pHash & 0x000000FF);
msgBuffer[0x04] = (pHash & 0x0000FF00) >> 8;
msgBuffer[0x05] = (pHash & 0x00FF0000) >> 16;
msgBuffer[0x06] = (pHash & 0xFF000000) >> 24;
msgBuffer[0x07] = (pAuthInfo & 0x00FF);
msgBuffer[0x08] = (pAuthInfo & 0xFF00) >> 8;
msgBuffer[0x09] = 0x00;
msgBuffer[0x0A] = 0x00;
// newSignature = SHA1(5D || Channel ID || Hash || AuthInfo || 00 00)
SHA1(msgBuffer, 11, msgDigest);
// Translate the byte digest into a 64-bit integer - this is our computed intermediate signature.
// As the signature is only 62 bits long at most, we have to truncate it by shifting the high DWORD right 2 bits (per spec).
QWORD iSignature = NEXTSNBITS(BYDWORD(&msgDigest[4]), 30, 2) << 32 | BYDWORD(msgDigest);
BN_lebin2bn((BYTE *)&iSignature, sizeof(iSignature), e);
/*
*
* Scalars:
* c = Random multiplier
* e = Intermediate Signature
* s = Signature
* n = Order of G
* k = Private Key
*
* Points:
* G(x, y) = Generator (Base Point)
* R(x, y) = Random derivative of the generator
* K(x, y) = Public Key
*
* Equation:
* s(sG + eK) = R (mod p)
* ↓ K = kG; R = cG ↓
*
* s(sG + ekG) = cG (mod p)
* s(s + ek)G = cG (mod p)
* ↓ G cancels out, the scalar arithmetic shrinks to order n ↓
*
* s(s + ek) = c (mod n)
* s² + (ek)s - c = 0 (mod n)
* ↓ This is a quadratic equation in respect to the signature ↓
*
* s = (-ek ± √((ek)² + 4c)) / 2 (mod n)
*/
// e = ek (mod n)
BN_mod_mul(e, e, privateKey, genOrder, numContext);
// s = e
BN_copy(s, e);
// s = (ek (mod n))²
BN_mod_sqr(s, s, genOrder, numContext);
// c *= 4 (c <<= 2)
BN_lshift(c, c, 2);
// s += c
BN_add(s, s, c);
// Around half of numbers modulo a prime are not squares -> BN_sqrt_mod fails about half of the times,
// hence if BN_sqrt_mod returns NULL, we need to restart with a different seed.
// s = √((ek)² + 4c (mod n))
noSquare = BN_mod_sqrt(s, s, genOrder, numContext) == nullptr;
// s = -ek + √((ek)² + 4c) (mod n)
BN_mod_sub(s, s, e, genOrder, numContext);
// If s is odd, add order to it.
// The order is a prime, so it can't be even.
if (BN_is_odd(s))
// s = -ek + √((ek)² + 4c) + n
BN_add(s, s, genOrder);
// s /= 2 (s >>= 1)
BN_rshift1(s, s);
// Translate resulting scalar into a 64-bit integer (the byte order is little-endian).
BN_bn2lebinpad(s, (BYTE *)&pSignature, BN_num_bytes(s));
// Pack product key.
packServer(pRaw, pUpgrade, pChannelID, pHash, pSignature, pAuthInfo);
EC_POINT_free(r);
} while (pSignature > BITMASK(62) || noSquare);
// ↑ ↑ ↑
// The signature can't be longer than 62 bits, else it will
// overlap with the AuthInfo segment next to it.
// Convert bytecode to Base24 CD-key.
base24((BYTE *)pRaw, pKey);
BN_free(c);
BN_free(s);
BN_free(x);
BN_free(y);
BN_free(e);
BN_CTX_free(numContext);
}
BOOL keyServer(
CHAR (&pKey)[PK_LENGTH + NULL_TERMINATOR],
DWORD nChannelID,
DWORD nAuthInfo,
BOOL bUpgrade
) {
// If the Channel ID isn't valid, quit.
if (nChannelID >= 1'000)
return false;
BIGNUM *privateKey = BN_new();
BIGNUM *genOrder = BN_new();
BN_hex2bn(&privateKey, privateKeySv);
BN_hex2bn(&genOrder, genOrderSv);
EC_POINT *genPoint, *pubPoint;
EC_GROUP *eCurve = initializeEllipticCurve(
pSv,
aSv,
bSv,
genXSv,
genYSv,
pubXSv,
pubYSv,
genOrder,
privateKey,
&genPoint,
&pubPoint
);
// Generate a stub 10-bit AuthInfo segment if none is specified.
if (nAuthInfo == 0) {
RAND_bytes((byte *)&nAuthInfo, 4);
nAuthInfo &= 0x3FF;
}
do {
generateServerKey(eCurve, genPoint, genOrder, privateKey, nChannelID, nAuthInfo, bUpgrade, pKey);
} while (!verifyServerKey(eCurve, genPoint, pubPoint, pKey));
return true;
}